5,722
Views
30
CrossRef citations to date
0
Altmetric
Articles

Impact of extraction parameters and their optimization on the nutraceuticals and antioxidant properties of aqueous extract mulberry leaf

, , , , &
Pages 717-732 | Received 05 Sep 2017, Accepted 23 Feb 2018, Published online: 04 May 2018

References

  • Chan, E. W. C.; Lye, P. Y.; Wong, S. K. Phytochemistry, Pharmacology, and Clinical Trials of Morus Alba. Chinese Journal of Natural Medicines 2016, 14, 17–30.
  • Gryn Rynko, A.; Bazylak, G.; Olszewska-Slonina, D. New Potential Phytotherapeutics Obtained from White Mulberry (Morus Alba L.). leaves. Biomedicine & Pharmacotherapy 2016, 84, 628–636. DOI: 10.1016/j.biopha.2016.09.081.
  • Jeszka‐Skowron, M.; Flaczyk, E.; Podgórski, T. In Vitro and In Vivo Analyses of Morus Alba Polish Var. Wielkolistna Zolwinska Leaf Ethanol–Water Extract—Antioxidant and Hypocholesterolemic Activities in Hyperlipideamic Rats. European Journal of Lipid Science and Technology 2017, 119. DOI: 10.1002/ejlt.201600514.
  • Sugiyama, M.; Katsube, T.; Koyama, A.; Itamura, H. Varietal Differences in the Flavonol Content of Mulberry (Morus Spp.) Leaves and Genetic Analysis of Quercetin 3-(6-Malonylglucoside) for Component Breeding. Journal of Agricultural and Food Chemistry 2013, 61, 9140–9147. DOI: 10.1021/jf403136w.
  • Yang, N. C.; Jhou, K. Y.; Tseng, C. Y. Antihypertensive Effect of Mulberry Leaf Aqueous Extract Containing γ-aminobutyric Acid in Spontaneously Hypertensive Rats. Food Chemistry 2012, 132, 1796–1801. DOI: 10.1016/j.foodchem.2011.11.143.
  • Kim, J. Y.; Kwon, H. J.; Jung, J. Y.; Kwon, H. Y.; Baek, J. G.; Kim, Y.-S.; Kwon, O. Comparison of Absorption of 1-Deoxynojirimycin from Mulberry Water Extract in Rats. Journal of Agricultural and Food Chemistry 2010, 58, 6666–6671. DOI: 10.1021/jf100322y.
  • Azmir, J.; Zaidul, I.; Rahman, M.; Sharif, K.; Mohamed, A.; Sahena, F.; Jahurul, M.; Ghafoor, K.; Norulaini, N.; Omar, A. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. Journal of Food Engineering 2013, 117, 426–436. DOI: 10.1016/j.jfoodeng.2013.01.014.
  • Wang, L.; Weller, C. L. Recent Advances in Extraction of Nutraceuticals from Plants. Trends in Food Science & Technology 2006, 17, 300–312. DOI: 10.1016/j.tifs.2005.12.004.
  • Kadam, S. U.; Tiwari, B. K.; O’Donnell, C. P. Application of Novel Extraction Technologies for Bioactives from Marine Algae. Journal of Agricultural and Food Chemistry 2013, 61, 4667–4675. DOI: 10.1021/jf400819p.
  • Tan, S. P.; Stathopoulos, C.; Parks, S.; Roach, P. An Optimised Aqueous Extract of Phenolic Compounds from Bitter Melon with High Antioxidant Capacity. Antioxidants 2014, 3, 814–829. DOI: 10.3390/antiox3040814.
  • Bucić-Kojić, A.; Planinić, M.; Tomas, S.; Bilić, M.; Velić, D. Study of Solid–Liquid Extraction Kinetics of Total Polyphenols from Grape Seeds. Journal of Food Engineering 2007, 81, 236–242. DOI: 10.1016/j.jfoodeng.2006.10.027.
  • Tan, S. P.; Parks, S. E.; Stathopoulos, C. E.; Roach, P. D. Extraction of Flavonoids from Bitter Melon. Food and Nutrition Sciences 2014, 5, 458. DOI: 10.4236/fns.2014.55054.
  • Qu, W.; Pan, Z.; Ma, H. Extraction Modeling and Activities of Antioxidants from Pomegranate Marc. Journal of Food Engineering 2010, 99, 16–23. DOI: 10.1016/j.jfoodeng.2010.01.020.
  • Tušek, A. J.; Benković, M.; Cvitanović, A. B.; Valinger, D.; Jurina, T.; Kljusurić, J. G. Kinetics and Thermodynamics of the Solid-Liquid Extraction Process of Total Polyphenols, Antioxidants and Extraction Yield from Asteraceae Plants. Industrial Crops and Products 2016, 91, 205–214. DOI: 10.1016/j.indcrop.2016.07.015.
  • Hinneburg, I.; Neubert, R. H. Influence of Extraction Parameters on the Phytochemical Characteristics of Extracts from Buckwheat (Fagopyrum Esculentum) Herb. Journal of Agricultural and Food Chemistry 2005, 53, 3–7. DOI: 10.1021/jf049118f.
  • Ignat, I.; Volf, I.; Popa, V. I. A Critical Review of Methods for Characterisation of Polyphenolic Compounds in Fruits and Vegetables. Food Chemistry 2011, 126, 1821–1835. DOI: 10.1016/j.foodchem.2010.12.026.
  • Metrouh-Amir, H.; Duarte, C. M. M.; Maiza, F. Solvent Effect on Total Phenolic Contents, Antioxidant, and Antibacterial Activities of Matricaria Pubescens. Industrial Crops and Products 2015, 67, 249–256. DOI: 10.1016/j.indcrop.2015.01.049.
  • Boeing, J. S.; Barizão, É. O.; E Silva, B. C.; Montanher, P. F.; De Cinque Almeida, V.; Visentainer, J. V. Evaluation of Solvent Effect on the Extraction of Phenolic Compounds and Antioxidant Capacities from the Berries: Application of Principal Component Analysis. Chemistry Central Journal 2014, 8, 48. DOI: 10.1186/s13065-014-0048-1.
  • Katsube, T.; Tsurunaga, Y.; Sugiyama, M.; Furuno, T.; Yamasaki, Y. Effect of Air-Drying Temperature on Antioxidant Capacity and Stability of Polyphenolic Compounds in Mulberry (Morus Alba L.). leaves. Food Chemistry 2009, 113, 964–969. DOI: 10.1016/j.foodchem.2008.08.041.
  • Tan, S. P.; Vuong, Q. V.; Stathopoulos, C. E.; Parks, S. E.; Roach, P. D. Optimized Aqueous Extraction of Saponins from Bitter Melon for Production of a Saponin‐Enriched Bitter Melon Powder. Food Chemistry 2014, 79. DOI: 10.1111/1750-3841.12514.
  • Zhang, L. L.; Bai, Y. L.; Shu, S. L.; Qian, D. W.; Ou Yang, Z.; Liu, L.; Duan, J. A., Simultaneous Quantitation of Nucleosides, Nucleobases, Amino Acids, and Alkaloids in Mulberry Leaf by Ultra High Performance Liquid Chromatography with Triple Quadrupole Tandem Mass Spectrometry. Journal of Separation Science 2014, 37, 1265–1275. DOI: 10.1002/jssc.201301267.
  • Chan, K. C.; Ho, H. H.; Lin, M. C.; Wu, C. H.; Huang, C. N.; Chang, W. C.; Wang, C. J. Mulberry Water Extracts Inhibit Rabbit Atherosclerosis through Stimulation of Vascular Smooth Muscle Cell Apoptosis via Activating P53 and Regulating Both Intrinsic and Extrinsic Pathways. Journal of Agricultural and Food Chemistry 2014, 62, 5092–5101. DOI: 10.1021/jf501466t.
  • Peng, C. H.; Liu, L. K.; Chuang, C. M.; Chyau, C. C.; Huang, C. N.; Wang, C. J. Mulberry Water Extracts Possess an Anti-Obesity Effect and Ability to Inhibit Hepatic Lipogenesis and Promote Lipolysis. Journal of Agricultural and Food Chemistry 2011, 59, 2663–2671. DOI: 10.1021/jf1043508.
  • Tang, C. C.; Huang, H. P.; Lee, Y. J.; Tang, Y. H.; Wang, C. J. Hepatoprotective Effect of Mulberry Water Extracts on Ethanol-Induced Liver Injury via Anti-Inflammation and Inhibition of Lipogenesis in C57BL/6J Mice. Food and Chemical Toxicology 2013, 62, 786–796. DOI: 10.1016/j.fct.2013.10.011.
  • Callejón, R.; González, A.; Troncoso, A.; Morales, M. Optimization and Validation of Headspace Sorptive Extraction for the Analysis of Volatile Compounds in Wine Vinegars. Journal of Chromatography 2008, 1204, 93–103. DOI: 10.1016/j.chroma.2008.07.064.
  • Kim, J. W.; Kim, S. U.; Lee, H. S.; Kim, I.; Ahn, M. Y.; Ryu, K. S. Determination of 1-Deoxynojirimycin in Morus Alba L. Leaves by Derivatization with 9-Fluorenylmethyl Chloroformate Followed by Reversed-Phase High-Performance Liquid Chromatography. Journal of Chromatography 2003, 1002, 93–99. DOI: 10.1016/S0021-9673(03)00728-3.
  • Horanni, R.; Engelhardt, U. H. Determination of Amino Acids in White, Green, Black, Oolong, Pu-Erh Teas and Tea Products. Journal of Food Composition and Analysis 2013, 31, 94–100. DOI: 10.1016/j.jfca.2013.03.005.
  • Tchabo, W.; Ma, Y.; Kwaw, E.; Zhang, H.; Li, X.; Afoakwah, N. A. Effects of Ultrasound, High Pressure, and Manosonication Processes on Phenolic Profile and Antioxidant Properties of a Sulfur Dioxide-Free Mulberry (Morus Nigra) Wine. Food and Bioprocess Technology 2017, 10, 1210–1223. DOI: 10.1007/s11947-017-1892-5.
  • Casazza, A. A.; Aliakbarian, B.; Sannita, E.; Perego, P. High-Pressure High-Temperature Extraction of Phenolic Compounds from Grape Skins. International Journal of Food Science & Technology 2012, 47, 399–405. DOI: 10.1111/j.1365-2621.2011.02853.x.
  • Mokrani, A.; Madani, K. Effect of Solvent, Time and Temperature on the Extraction of Phenolic Compounds and Antioxidant Capacity of Peach (Prunus Persica L.). Fruit. Separation and Purification Technology 2016, 162, 68–76. DOI: 10.1016/j.seppur.2016.01.043.
  • Garcia-Salas, P.; Morales-Soto, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phenolic-Compound-Extraction Systems for Fruit and Vegetable Samples. Molecules 2010, 15, 8813–8826. DOI: 10.3390/molecules15128813.
  • Carrera, C.; Ruiz-Rodríguez, A.; Palma, M.; Barroso, C. G. Ultrasound Assisted Extraction of Phenolic Compounds from Grapes. Analytica chimica acta 2012, 732, 100–104. DOI: 10.1016/j.aca.2011.11.032.
  • Chiang, P.-S.; Lee, D.-J.; Whiteley, C. G.; Huang, C.-Y. Extracting Antioxidant Phenolic Compounds from Compressional-Puffing Pretreated Pinus Morrisonicola: Effects of Operational Parameters, Kinetics and Characterization. Journal of the Taiwan Institute of Chemical Engineers 2017, 75, 70–76. DOI: 10.1016/j.jtice.2017.03.041.
  • Thoo, Y. Y.; Ho, S. K.; Liang, J. Y.; Ho, C. W.; Tan, C. P. Effects of Binary Solvent Extraction System, Extraction Time and Extraction Temperature on Phenolic Antioxidants and Antioxidant Capacity from Mengkudu (Morinda Citrifolia). Food Chemistry 2010, 120, 290–295. DOI: 10.1016/j.foodchem.2009.09.064.
  • Vuong, Q. V.; Hirun, S.; Roach, P. D.; Bowyer, M. C.; Phillips, P. A.; Scarlett, C. J. Effect of Extraction Conditions on Total Phenolic Compounds and Antioxidant Activities of Carica Papaya Leaf Aqueous Extracts. Journal of Herbal Medicine 2013, 3, 104–111. DOI: 10.1016/j.hermed.2013.04.004.
  • Wanyo, P.; Kaewseejan, N.; Meeso, N.; Siriamornpun, S. Bioactive Compounds and Antioxidant Properties of Different Solvent Extracts Derived from Thai Rice By-Products. Applied Biological Chemistry 2016, 59, 373–384. DOI: 10.1007/s13765-016-0173-8.
  • Vuong, Q. V.; Golding, J. B.; Stathopoulos, C. E.; Nguyen, M. H.; Roach, P. D. Optimizing Conditions for the Extraction of Catechins from Green Tea Using Hot Water. Journal of Separation Science 2011, 34, 3099–3106. DOI: 10.1002/jssc.v34.21.
  • Belwal, T.; Dhyani, P.; Bhatt, I. D.; Rawal, R. S.; Pande, V. Optimization Extraction Conditions for Improving Phenolic Content and Antioxidant Activity in Berberis Asiatica Fruits Using Response Surface Methodology (RSM). Food chemistry 2016, 207, 115–124. DOI: 10.1016/j.foodchem.2016.03.081.
  • Spigno, G.; Tramelli, L.; De Faveri, D. M. Effects of Extraction Time, Temperature and Solvent on Concentration and Antioxidant Activity of Grape Marc Phenolics. Journal of Food Engineering 2007, 81, 200–208. DOI: 10.1016/j.jfoodeng.2006.10.021.
  • Tan, M.; Tan, C.; Ho, C. Effects of Extraction Solvent System, Time and Temperature on Total Phenolic Content of Henna (Lawsonia Inermis) Stems. International Food Research Journal 2013, 20, 3117–3123.
  • Tchabo, W.; Ma, Y.; Engmann, F. N.; Zhang, H. Ultrasound-Assisted Enzymatic Extraction (UAEE) of Phytochemical Compounds from Mulberry (Morus Nigra) Must and Optimization Study Using Response Surface Methodology. Industrial Crops and Products 2015, 63, 214–225. DOI: 10.1016/j.indcrop.2014.09.053.
  • Pinelo, M.; Del Fabbro, P.; Manzocco, L.; Nuñez, M. J.; Nicoli, M. C. Optimization of Continuous Phenol Extraction from Vitis Vinifera Byproducts. Food Chemistry 2005, 92, 109–117. DOI: 10.1016/j.foodchem.2004.07.015.
  • Zhao, X.; Zhu, H.; Zhang, G.; Tang, W. Effect of Superfine Grinding on the Physicochemical Properties and Antioxidant Activity of Red Grape Pomace Powders. Powder Technology 2015, 286, 838–844. DOI: 10.1016/j.powtec.2015.09.025.
  • Hu, J.; Chen, Y.; Ni, D. Effect of Superfine Grinding on Quality and Antioxidant Property of Fine Green Tea Powders. LWT-Food Science and Technology 2012, 45, 8–12. DOI: 10.1016/j.lwt.2011.08.002.
  • Ramachandraiah, K.; Chin, K. B. Evaluation of Ball-Milling Time on the Physicochemical and Antioxidant Properties of Persimmon By-Products Powder. Innovative Food Science & Emerging Technologies 2016, 37, 115–124. DOI: 10.1016/j.ifset.2016.08.005.
  • Zhong, C.; Zu, Y.; Zhao, X.; Li, Y.; Ge, Y.; Wu, W.; Zhang, Y.; Li, Y.; Guo, D. Effect of Superfine Grinding on Physicochemical and Antioxidant Properties of Pomegranate Peel. International Journal of Food Science & Technology 2016, 51, 212–221. DOI: 10.1111/ijfs.12982.
  • Xiao, W.; Zhang, Y.; Fan, C.; Han, L. A Method for Producing Superfine Black Tea Powder with Enhanced Infusion and Dispersion Property. Food Chemistry 2017, 214, 242–247. DOI: 10.1016/j.foodchem.2016.07.096.
  • Zaiter, A.; Becker, L.; Karam, M. C.; Dicko, A. Effect of Particle Size on Antioxidant Activity and Catechin Content of Green Tea Powders. Journal of Food Science and Technology 2016, 53, 2025–2032. DOI: 10.1007/s13197-016-2201-4.