5,949
Views
22
CrossRef citations to date
0
Altmetric
Articles

Emulsion stability of clove oil in chitosan and sodium alginate matrix

, , , ORCID Icon, , , & ORCID Icon show all
Pages 566-581 | Received 25 Dec 2016, Accepted 16 Mar 2018, Published online: 23 Apr 2018

References

  • Chaieb, K.; Hajlaoui, H.; Zmantar, T.; Kahla-Nakhbi, A. B.; Rouabhia, M.; Mahdouani, K.; Bakhrouf, A. The Chemical Composition and Biological Activity of Clove Essential Oil, Eugenia Caryophyllata (Syzigium Aromaticum L. Myrtaceae): A Short Review. Phytotherapy Research 2007, 21, 501–506. DOI: 10.1002/ptr.2124.
  • Kegley, S.; Conlisk, E.; Moses, M. Clove Oil (Eugenol) in Marin Municipal Water District: Herbicide Risk Assessment Ch. 6; Pesticide Research Institute: California, January 1 2010 2010; pp. 1–47.
  • Milind, P.; Deepa, K.Clove: A Champion Spice. International Journal of Research Ayurveda & Pharmacy 2011, 2, 47–54.
  • Wenqiang, G.; Shufen, L.; Ruixiang, Y.; Shaokun, T.; Can, Q. Comparison of Essential Oils of Clove Buds Extracted with Supercritical Carbon Dioxide and Other Three Traditional Extraction Methods. Food Chemistry 2007, 101, 1558–1564. DOI: 10.1016/j.foodchem.2006.04.009.
  • Jin, S.; Cho, K.-H. Water Extracts of Cinnamon and Clove Exhibits Potent Inhibition of Protein Glycation and Anti-Atherosclerotic Activity in Vitro and in Vivo Hypolipidemic Activity in Zebrafish. Food and Chemical Toxicology 2011, 49, 1521–1529. DOI: 10.1016/j.fct.2011.03.043.
  • Misharina, T. A.; Samusenko, A. L.Antioxidant Properties of Essential Oils from Lemon, Grapefruit, Coriander, Clove, and Their Mixtures. Prikladnaya Biokhimiya Mikrobiologiya 2008, 44, 482–486.
  • Yoshimura, M.; Amakura, Y.; Yoshida, T. Polyphenolic Compounds in Clove and Pimento and Their Antioxidative Activities. Bioscience Biotechnology and Biochemistry 2011, 75, 2207–2212. DOI: 10.1271/bbb.110491.
  • Kim, I.-S.; Yang, M.-R.; Lee, O.-H.; Kang, S.-N. Antioxidant Activities of Hot Water Extracts from Various Spices. International Journal of Molecular Sciences 2011, 12, 4120–4131. DOI: 10.3390/ijms12064120.
  • Wang, X.; Jiang, Y.; Wang, Y. W.; Huang, M. T.; Ho, C. T.; Huang, Q. Enhancing Anti-Inflammation Activity of Curcumin through O/W Nanoemulsions. Food Chemistry 2008, 108, 419–424. DOI: 10.1016/j.foodchem.2007.10.086.
  • Singh, A. K.; Dhamanigi, S. S.; Asad, M. Anti-Stress Activity of Hydro-Alcoholic Extract of Eugenia Caryophyllus Buds (Clove). Indian Journal of Pharmacology 2009, 41, 28–31. DOI: 10.4103/0253-7613.48889.
  • Keskin, D.; Toroglu, S.Studies on Antimicrobial Activities of Solvent Extracts of Different Species. Journal of Environmental Biology 2011, 32, 251–256.
  • Cui, H.; Zhao, X.; Lin, L. The Specific Antibacterial Activity of Liposome-Encapsulated Clove Oil and Its Application in Tofu. Food Control 2015, 56, 128–134. DOI: 10.1016/j.foodcont.2015.03.026.
  • Anwer, M. K.; Jamil, S.; Ibnouf, E. O.; Shakeel, F. Enhanced Antibacterial Effects of Clove Essential Oil by Nanoemulsion. Journal of Oleo Science 2014, 63, 347–354. DOI: 10.5650/jos.ess13213.
  • Xiao, J. X.; Yu, H. Y.; Yang, J. Microencapsulation of Sweet Orange Oil by Complex Coacervation with Soybean Protein Isolate/Gum Arabic. Food Chemistry 2011, 125, 1267–1272. DOI: 10.1016/j.foodchem.2010.10.063.
  • Authority, E. F. S.;.Conclusion on the Peer Review of the Pesticide Risk Assessment of the Active Substance of Clove Oil. European Food Safety Authority Journal 2012, 10, 2506–2549.
  • Cortés-Rojas, D. F.; Souza, C. R. F.; Oliveira, W. P. Encapsulation of Eugenol Rich Clove Extract in Solid Lipid Carriers. Journal of Food Engineering 2014, 127, 34–42. DOI: 10.1016/j.jfoodeng.2013.11.027.
  • Rana, I. S.; Rana, A. S.; Rajak, R. C. Evaluation of Antifungal Activity in Essential Oil of the Syzygium Aromaticum (L.) By Extraction, Purification and Analysis of Its Main Component Eugenol. Brazilian Journal of Microbiology 2011, 42, 1269–1277. DOI: 10.1590/S1517-83822011000400004.
  • Park, M.-J.; Gwak, K.-S.; Yang, I.; Choi, W.-S.; Jo, H.-J.; Chang, J.-W.; Jeung, E.-B.; Choi, I.-G.Antifungal Activities of the Essential Oils in Syzygium Aromaticum (L.) Merr. Et Perry and Leptospermum Petersonii Bailey and Their Constituents against Various Dermatophytes. The Journal of Microbiology 2007, 45, 460–465.
  • Chatterjee, D.; Bhattacharjee, P. Comparative Evaluation of the Antioxidant Efficacy of Encapsulated and Un-Encapsulated Eugenol-Rich Clove Extracts in Soybean Oil: Shelf-Life and Frying Stability of Soybean Oil. Journal of Food Engineering 2013, 117, 545–550. DOI: 10.1016/j.jfoodeng.2012.11.016.
  • Lin, L.; Cui, H.; Zhou, H.; Zhang, X.; Bortolini, C.; Chen, M.; Liu, L.; Dong, M. Nanoliposomes Containing Eucalyptus Citriodora as Antibiotic with Specific Antimicrobial Activity. Chemistry Communications 2015, 51, 2653–2655. DOI: 10.1039/C4CC09386K.
  • Hill, L. E.; Gomes, C.; Taylor, T. M. Characterization of Beta-Cyclodextrin Inclusion Complexes Containing Essential Oils (Trans-Cinnamaldehyde, Eugenol, Cinnamon Bark, and Clove Bud Extracts) for Antimicrobial Delivery Applications. LWT - Food Science and Technology 2013, 51, 86–93. DOI: 10.1016/j.lwt.2012.11.011.
  • Majeed, H.; Liu, F.; Hategekimana, J.; Sharif, H. R.; Qi, J.; Ali, B.; Bian, -Y.-Y.; Ma, J.; Yokoyama, W.; Zhong, F. Bactericidal Action Mechanism of Negatively Charged Food Grade Clove Oil Nanoemulsions. Food Chemistry 2016, 197, 75–83. DOI: 10.1016/j.foodchem.2015.10.015.
  • Ghosh, V.; Mukherjee, A.; Chandrasekaran, N. Eugenol-Loaded Antimicrobial Nanoemulsion Preserves Fruit Juice Against, Microbial Spoilage. Colloids and Surfaces B: Biointerfaces 2014, 114, 392–397. DOI: 10.1016/j.colsurfb.2013.10.034.
  • Cui, H.; Zhou, H.; Lin, L. The Specific Antibacterial Effect of the Salvia Oil Nanoliposomes against Staphylococcus Aureus Biofilms on Milk Container. Food Control 2016, 61, 92–98. DOI: 10.1016/j.foodcont.2015.09.034.
  • Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of Spray-Drying in Microencapsulation of Food Ingredients: An Overview. Food Research International 2007, 40, 1107–1121. DOI: 10.1016/j.foodres.2007.07.004.
  • Mokhtari, S.; Jafari, S. M.; Assadpour, E. Development of a Nutraceutical Nano-Delivery System through Emulsification/Internal Gelation of Alginate. Food Chemistry 2017, 229, 286–295. DOI: 10.1016/j.foodchem.2017.02.071.
  • Ye, S.; Wang, C.; Liu, X.; Tong, Z. Deposition Temperature Effect on Release Rate of Indomethacin Microcrystals from Microcapsules of Layer-By-Layer Assembled Chitosan and Alginate Multilayer Films. Journal of Controlled Release 2005, 106, 319–328. DOI: 10.1016/j.jconrel.2005.05.006.
  • Chávarri, M.; Marañón, I.; Ares, R.; Ibáñez, F. C.; Marzo, F.; del Carmen Villarán, M. Microencapsulation of a Probiotic and Prebiotic in Alginate-Chitosan Capsules Improves Survival in Simulated Gastro-Intestinal Conditions. International journal of food microbiology 2010, 142, 185–189. DOI: 10.1016/j.ijfoodmicro.2010.06.022.
  • Shinde, U.; Nagarsenker, M.Microencapsulation of Eugenol by Gelatin-Sodium Alginate Complex Coacervation. Indian journal of pharmaceutical sciences 2011, 73, 311–315.
  • Soliman, E. A.; El-Moghazy, A. Y.; El-Din, M. M.; Massoud, M. A. Microencapsulation of Essential Oils within Alginate: Formulation and in Vitro Evaluation of Antifungal Activity. Journal of Encapsulation and Adsorption Sciences 2013, 3, 48–55. DOI: 10.4236/jeas.2013.31006.
  • Lee, K. Y.; Mooney, D. J. Alginate: Properties and Biomedical Applications. Progress in polymer science 2012, 37, 106–126. DOI: 10.1016/j.progpolymsci.2011.06.003.
  • Najafi-Soulari, S.; Shekarchizadeh, H.; Kadivar, M. Encapsulation Optimization of Lemon Balm Antioxidants in Calcium Alginate Hydrogels. Journal of Biomaterials Science, Polymer Edition 2016, 27, 1631–1644. DOI: 10.1080/09205063.2016.1226042.
  • Chan, E.-S.;. Preparation of Ca-Alginate Beads Containing High Oil Content: Influence of Process Variables on Encapsulation Efficiency and Bead Properties. Carbohydrate Polymers 2011, 84, 1267–1275. DOI: 10.1016/j.carbpol.2011.01.015.
  • Pedro, A. S.; Cabral-Albuquerque, E.; Ferreira, D.; Sarmento, B. Chitosan: An Option for Development of Essential Oil Delivery Systems for Oral Cavity Care? Carbohydrate Polymers 2009, 76, 501–508. DOI: 10.1016/j.carbpol.2008.12.016.
  • Kumar, M. N. R.;. A Review of Chitin and Chitosan Applications. Reactive and functional polymers 2000, 46, 1–27. DOI: 10.1016/S1381-5148(00)00038-9.
  • Dutta, P. K.; Tripathi, S.; Mehrotra, G. K.; Dutta, J. Perspectives for Chitosan Based Antimicrobial Films in Food Applications. Food Chemistry 2009, 114, 1173–1182. DOI: 10.1016/j.foodchem.2008.11.047.
  • Ratajska, M.; Strobin, G.; Wiśniewska-Wrona, M.; Ciechańska, D.; Struszczyk, H.; Boryniec, S.; Biniaś, D.; Biniaś, W.Studies on the Biodegradation of Chitosan in an Aqueous Medium. Fibres & Textiles in Eastern Europe 2003, 11, 75–79.
  • Kwon, H.-Y.; Lee, J.-Y.; Choi, S.-W.; Jang, Y.; Kim, J.-H. Preparation of PLGA Nanoparticles Containing Estrogen by Emulsification–Diffusion Method. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2001, 182, 123–130. DOI: 10.1016/S0927-7757(00)00825-6.
  • Hsieh, W.-C.; Chang, C.-P.; Gao, Y.-L. Controlled Release Properties of Chitosan Encapsulated Volatile Citronella Oil Microcapsules by Thermal Treatments. Colloids and Surfaces B: Biointerfaces 2006, 53, 209–214. DOI: 10.1016/j.colsurfb.2006.09.008.
  • Bonilla, J.; Vargas, M.; Atarés, L.; Chiralt, A. Physical Properties of Chitosan-Basil Essential Oil Edible Films as Affected by Oil Content and Homogenization Conditions. Procedia Food Science 2011, 1, 50–56. DOI: 10.1016/j.profoo.2011.09.009.
  • Keawchaoon, L.; Yoksan, R. Preparation, Characterization and in Vitro Release Study of Carvacrol-Loaded Chitosan Nanoparticles. Colloids and Surfaces B: Biointerfaces 2011, 84, 163–171. DOI: 10.1016/j.colsurfb.2010.12.031.
  • Hosseini, S. F.; Zandib, M.; Rezaeia, M.; Farahmandghavic, F. Two-Step Method for Encapsulation of Oregano Essential Oil in Chitosan Nanoparticles: Preparation, Characterization and in Vitro Release Study. Carbohydrate Polymers 2013, 95, 50–56. DOI: 10.1016/j.carbpol.2013.02.031.
  • Martínez-Hernández, G. B.; Amodio, M. L.; Colelli, G. Carvacrol-Loaded Chitosan Nanoparticles Maintain Quality of Fresh-Cut Carrots. Innovative Food Science and Emerging Technologies 2017, 41, 56–63. DOI: 10.1016/j.ifset.2017.02.005.
  • Ghaderi-Ghahfarokhi, M.; Barzegar, M.; Sahari, M. A.; Gavlighi, H. A.; Gardini, F. Chitosan-Cinnamon Essential Oil Nano-Formulation: Application as a Novel Additive for Controlled Release and Shelf Life Extension of Beef Patties. International Journal of Biological Macromolecules 2017, 102, 19–28. DOI: 10.1016/j.ijbiomac.2017.04.002.
  • Sotelo-Boy´as, M.; Correa-Pacheco, Z.; Bautista-Ba˜nos, S.; G´Omez, Y. Release Study and Inhibitory Activity of Thyme Essential Oil-Loaded Chitosan Nanoparticles and Nanocapsules against Foodborne Bacteria. International Journal of Biological Macromolecules 2017, 103, 409–414. DOI: 10.1016/j.ijbiomac.2017.05.063.
  • Terjung, N.; Löffler, M.; Gibis, M.; Hinrichs, J.; Weiss, J. Influence of Droplet Size on the Efficacy of Oil-In-Water Emulsions Loaded with Phenolic Antimicrobials. Food & function 2012, 3, 290–301. DOI: 10.1039/C2FO10198J.
  • Li, R.; Deng, L.; Cai, Z.; Zhang, S.; Wang, K.; Li, L.; Ding, S.; Zhou, C. Liposomes Coated with Thiolated Chitosan as Drug Carriers of Curcumin. Materials Science and Engineering C 2017, 80, 156–164. DOI: 10.1016/j.msec.2017.05.136.
  • Turasan, H.; Sahin, S.; Sumnu, G. Encapsulation of Rosemary Essential Oil. LWT - Food Science and Technology 2015, 64, 112–119. DOI: 10.1016/j.lwt.2015.05.036.
  • Sapei, L.; Naqvi, M. A.; Rousseau, D. Stability and Release Properties of Double Emulsions for Food Applications. Food Hydrocolloids 2012, 27, 316–323. DOI: 10.1016/j.foodhyd.2011.10.008.
  • Hossain, M. A.; Al-Hashmi, R. A.; Weli, A. M.; Al-Riyami, Q.; Al-Sabahib, J. N. Constituents of the Essential Oil from Different Brands of Syzigium Caryophyllatum L by Gas Chromatography-Mass Spectrometry. Asian Pacific Journal of Tropical Biomedicine 2012, 2, S1446–S1449. DOI: 10.1016/S2221-1691(12)60435-3.
  • Bhuiyan, M. N. I.;.Constituents of the Essential Oil from Leaves and Buds of Clove (Syzigium Caryophyllatum (L.) Alston). African Journal of Pharmacy and Pharmacology 2012, 6, 1260–1263.
  • Alma, M. H.; Ertaş, M.; Nitz, S.; Kollmannsberger, H.Chemical Composition and Content of Essential Oil from the Bud of Cultivated Turkish Clove (Syzygium Aromaticum L.). Bioresources 2007, 2, 265–269.
  • Nassar, M. I.; Gaara, A. H.; El-Ghorab, A. H.; Farrag, A.-R. H.; Shen, H.; Huq, E.; Mabry, T. J.Chemical Constituents of Clove (Syzygium Aromaticum, Fam. Myrtaceae) and Their Antioxidant Activity. Revista Latinoamericana de Química 2007, 35, 47–57.
  • Purwanti, N.; Neves, M. A.; Uemura, K.; Nakajima, M.; Kobayashi, I. Stability of Monodisperse Clove Oil Droplets Prepared by Microchannel Emulsification. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2015, 466, 66–74. DOI: 10.1016/j.colsurfa.2014.10.058.
  • Ma, J.; Lin, Y.; Chen, X.; Zhao, B.; Zhang, J. Flow Behavior, Thixotropy and Dynamical Viscoelasticity of Sodium Alginate Aqueous Solutions. Food Hydrocolloids 2014, 38, 119–128. DOI: 10.1016/j.foodhyd.2013.11.016.
  • Mancini, M.; Moresi, M.; Sappino, F. Rheological Behaviour of Aqueous Dispersions of Algal Sodium Alginates. Journal of Food Engineering 1996, 28, 283–295. DOI: 10.1016/0260-8774(95)00068-2.
  • Shepherd, R.; Reader, S.; Falshaw, A. Chitosan Functional Properties. Glycoconjugate Journal 1997, 14, 535–542. DOI: 10.1023/A:1018524207224.
  • Hunter, R. J.;. Zeta Potential in Colloid Science: Principles and Applications; Academic Press London, London, 1981; p. 386.
  • Riddick, T. M.;. Control of Colloidal Stability through Zeta Potential; Livingston Pub. Co, New York, 1968.
  • Vladisavljević, G. T.; Lambrich, U.; Nakajima, M.; Schubert, H. Production of O/W Emulsions Using SPG Membrane, Ceramic α-Al2O3 Membranes, Microfluidizer and a Microchannel Plate - a Comparative Study. Colloids and Surfaces A 2004, 232, 199–207. DOI: 10.1016/j.colsurfa.2003.10.026.
  • Vladisavljević, G. T.; Kobayashi, I.; Nakajima, M. Production of Uniform Droplets Using Membrane, Microchannel and Microfluidic Emulsification Devices. Microfluid Nanofluid 2012, 13, 151–178. DOI: 10.1007/s10404-012-0948-0.
  • Khalid, N.; Kobayashi, I.; Neves, M. A.; Uemura, K.; Nakajima, M. Preparation and Characterization of Water-In-Oil Emulsions Loaded with High Concentration of L-Ascorbic Acid. LWT - Food Science and Technology 2013, 51, 448–454. DOI: 10.1016/j.lwt.2012.11.020.
  • Purwanti, N.; Ichikawa, S.; Neves, M. A.; Uemura, K.; Nakajima, M.; Kobayashi, I. β-lactoglobulin as Food Grade Surfactant for Clove Oil-In-Water and Limonene-In-Water Emulsion Droplets Produced by Microchannel Emulsification. Food Hydrocolloids 2016, 60, 98–108. DOI: 10.1016/j.foodhyd.2016.03.024.
  • Lucassen-Reynders, E. H.; Kuijpers, K. A. The Role of Interfacial Prperties in Emulsification. Colloids and Surfaces 1992, 65, 175–184. DOI: 10.1016/0166-6622(92)80272-4.
  • Peng, L.; Yang, M.-R.; Guo, -S.-S.; Liu, W.; Zhao, X.-Z. The Effect of Interfacial Tension on Droplet Formation in Flow-Focusing Microfluidic Device. Biomedical Microdevices 2011, 13, 559–564. DOI: 10.1007/s10544-011-9526-6.
  • Ho, C. C.; Chow, M. C. The Effect of the Refining Process on the Interfacial Properties of Palm Oil. Journal of the American Oil Chemists’ Society 2000, 77, 191–199. DOI: 10.1007/s11746-000-0031-7.
  • Santos, A. L.; Chierice, G. O.; Alexander, K. S.; Riga, A.; Matthews, E. Characterization of the Raw Essential Oil Eugeno Extracted from Syzygium Aromaticum L. Journal of Thermal Analysis and Calorimetry 2009, 96, 821–825. DOI: 10.1007/s10973-009-0030-7.
  • Woranuch, S.; Yoksan, R. Eugenol-Loaded Chitosan Nanoparticles: I. Thermal Stability Improvement of Eugenol through Encapsulation. Carbohydrate Polymers 2013, 96, 578–585. DOI: 10.1016/j.carbpol.2012.08.117.
  • Kayaci, F.; Ertas, Y.; Uyar, T. Enhanced Thermal Stability of Eugenol by Cyclodextrin Inclusion Complex Encapsulated in Electrospun Polymeric Nanofibers. Journal of Agricultural and Food Chemistry 2013, 61, 8156–8165. DOI: 10.1021/jf402923c.
  • McClements, D.;. Food Emulsions: Principles, Practices and Techniques; CRC Press: Boca Raton, Florida, 2005.
  • Soares, J. P.; Santos, J. E.; Chierice, G. O.; Cavalheiro, E. T. G. Thermal Behavior of Alginic Acid and Its Sodium Salt. Eclética Química 2004, 29, 57–64. DOI: 10.1590/S0100-46702004000200009.
  • Fioramonti, S. A.; Perez, A. A.; Aríngoli, E. E.; Rubiolo, A. C.; Santiago, L. G. Design and Characterization of Soluble Biopolymer Complexes Produced by Electrostatic Self-Assembly of a Whey Protein Isolate and Sodium Alginate. Food Hydrocolloids 2014, 35, 129–136. DOI: 10.1016/j.foodhyd.2013.05.001.