4,476
Views
11
CrossRef citations to date
0
Altmetric
Articles

Determination of the complex permittivity of cherry, pulped, green, and roasted coffee using a planar dielectric platform and a coaxial probe between 0.3 and 6 GHz

ORCID Icon, , &
Pages 1332-1343 | Received 10 Oct 2017, Accepted 13 Jun 2018, Published online: 29 Jun 2018

References

  • International Coffee Organization - The Current State of the Global Coffee Trade | #CoffeeTradeStats. Food Research International. http://www.ico.org/monthly_coffee_trade_stats.asp.
  • Sunarharum, W. B.; Williams, D. J.; Smyth, H. E. Complexity of Coffee Flavor: A Compositional and Sensory Perspective. Food Researcher International 2014, 62, 315–325. DOI: 10.1016/j.foodres.2014.02.030.
  • Cupping standards. http://://www.scaa.org/?page=resources&d=cupping-standards.
  • Poltronieri, P.; Rossi, F. Challenges in Specialty Coffee Processing and Quality Assurance. Challenges 2016, 7, 19. DOI: 10.3390/challe7020019.
  • Puerta-Quintero, G. I.;. Influencia De Los Granos De Café Cosechados Verdes En La Calidad Física Y Organoléptica De La Bebida. Cenicafé 2000, 51, 136–150.
  • Arcila, J.; Farfán, F.; Moreno, A.; Salazar, L.; Hincapié, E. Sistemas De Producción De Café En Colombia, 1st EditioCENICAFE; Caldas: Chinchina, 2007
  • Sustainability that matters 1927-2010. https://www.federaciondecafeteros.org/static/files/informe_sostenibilidad_eng.pdf.
  • Mathieu, F.; Malosse, C.; Frérot, B. Identification of the Volatile Components Released by Fresh Coffee Berries at Different Stages of Ripeness. Journal Agricultural Food Chemical 1998, 46, 1106–1110. DOI: 10.1021/jf970851z.
  • Ortiz, A.; Vega, F. E.; Posada, F. Volatile Composition of Coffee Berries at Different Stages of Ripeness and Their Possible Attraction to the Coffee Berry Borer Hypothenemus Hampei (Coleoptera : Curculionidae). Journal of Agricultural and Food Chemistry 2004, 52, 5914–5918. DOI: 10.1021/jf049537c.
  • Sandoval, Z.; Prieto, F.; Betancur, J., Digital Image Processing for Classification of Coffee Cherries, in Electronics, Robotics and Automotive Mechanics Conference (CERMA), 2010, 2010, pp. 417–421.
  • Silva, S. D.; De Queiroz, D. M.; Pinto, F. D. C.; Santos, N. T. Coffee Quality and Its Relationship with Brix Degree and Colorimetric Information of Coffee Cherries. Precis Agricultural 2014, 15, 543–554. DOI: 10.1007/s11119-014-9352-y.
  • Damez, J.-L.; Clerjon, S. Quantifying and Predicting Meat and Meat Products Quality Attributes Using Electromagnetic Waves: An Overview, 2013, 95, 879-896.
  • Sosa-Morales, M. E.; Valerio-Junco, L.; López-Malo, A.; García, H. S. Dielectric Properties of Foods: Reported Data in the 21st Century and Their Potential Applications. LWT - Food Sciences Technological 2010, 43, 1169–1179. DOI: 10.1016/j.lwt.2010.03.017.
  • Berbert, P. A.; Queiroz, D. M.; Sousa, E. F.; Molina, M. B.; Melo, E. C.; Faroni, L. R. D. Dielectric Properties of Parchment Coffee. Journal Agricultural Engineering Researcher 2001, 80, 65–80. DOI: 10.1006/jaer.2000.0689.
  • Iaccheri, E.; Laghi. L.; Cevoli, C.; Berardinelli, A.; Ragni, L.; Romani, S. Different Analytical Approaches for the Study of Water Features in Green and Roasted Coffee Beans. Journal Food Engineering 2015, 146, 28–35. DOI: 10.1016/j.jfoodeng.2014.08.016.
  • Lime Microsystems. FPRF MIMO Transceiver IC With Integrated Microcontroller LMS7002M; Surrey Tech Centre Occam Road, Guildford, United Kingdom 2015.
  • Keysight Technologies. Basics of Measuring the Dielectric Properties of Materials. Application note. Keysight Technologies, Santa Rosa, California 2015.
  • Roelvink, J.; Trabelsi, S.; Nelson, S. O. A Planar Transmission-Line Sensor for Measuring the Microwave Permittivity of Liquid and Semisolid Biological Materials. IEEE Transactions Instruments Measurement 2013, 62, 2974–2982. DOI: 10.1109/TIM.2013.2265453.
  • Blackham, D. V.; Pollard, R. D. An Improved Technique for Permittivity Measurements Using a Coaxial Probe. IEEE Transactions Instruments Measurement 1997, 46, 1093–1099. DOI: 10.1109/19.676718.
  • de Castro, R. D.; Marraccini, P. Cytology, Biochemistry and Molecular Changes during Coffee Fruit Development. Brazilian Journal Plant Physiological 2006, 18, 175–199. DOI: 10.1590/S1677-04202006000100013.
  • Adnan, A.; Von Hörsten, D.; Pawelzik, E.; Mörlein, D. Rapid Prediction of Moisture Content in Intact Green Coffee Beans Using near Infrared Spectroscopy. Foods 2017, 6, 38. DOI: 10.3390/foods6080062.
  • Berbert, P. A.; Molina, M. B.; de Oliveira Carlesso, V.; de Oliveira, M. R. Use of a Dielectric Function for Determination of Coffee Seeds Moisture Content. Bragantia 2008, 67, 541–548. DOI: 10.1590/S0006-87052008000200032.
  • Nelson, S. O.; You, T.-S. Relationships between Microwave Permittivities of Solid and Pulverised Plastics. Journal Physical D Applications Physical 1990, 23, 346–353. DOI: 10.1088/0022-3727/23/3/014.
  • Wehrens, R.;. Chemometrics with R : Multivariate Data Analysis in the Natural Sciences and Life Sciences; Springer, New York, United States 2011.
  • Mdatools: Multivariate Data Analysis for Chemometrics. https://cran.r-project.org/web/packages/mdatools/mdatools.pdf.
  • Andersen, C. M.; Bro, R. Variable Selection in Regression-A Tutorial. Journal Chemometrics 2010, 24, 728–737. DOI: 10.1002/cem.1360.
  • Castro-Giraldez, M.; Fito, P. J.; Chenoll, C.; Fito, P. Development of a Dielectric Spectroscopy Technique for the Determination of Apple (Granny Smith) Maturity. Innovative Food Sciences Emergency Technological 2010, 11, 749–754. DOI: 10.1016/j.ifset.2010.08.002.
  • Berbert, P. A.; Molina, M. A. B.; Carlesso, V. O.; Oliveira, M. T. R. Moisture Determination in Coffee Seeds by the Capacitance Method at Radiofrequencies. Reviews Bras Sementes 2007, 29, 159–170.
  • Manzocco, L.; Nicoli, M. C. Modeling the Effect of Water Activity and Storage Temperature on Chemical Stability of Coffee Brews. Journal of Agricultural and Food Chemistry 2007, 55, 6521–6526. DOI: 10.1021/jf070166k.
  • Craig, A. P.; Franca, A. S.; Oliveira, L. S. Discrimination between Immature and Mature Green Coffees by Attenuated Total Reflectance and Diffuse Reflectance Fourier Transform Infrared Spectroscopy. Journal Food Sciences 2011, 76, C1162–C1168. DOI: 10.1111/j.1750-3841.2011.02359.x.
  • Bona, E.; Marquetti, I.; Varaschim Link, J.; Yasuo Figueiredo Makimori, G.; da Costa Arca, V.; Luis Guimar, A. Support Vector Machines in Tandem with Infrared Spectroscopy for Geographical Classification of Green Arabica Coffee. LWT - Food Sciences Technological 2017, 76, 330–336. DOI: 10.1016/j.lwt.2016.04.048.
  • Tolessa, K.; Rademaker, M.; de Baets, B.; Boeckx, P. Prediction of Specialty Coffee Cup Quality Based on near Infrared Spectra of Green Coffee Beans. Talanta 2016, 150, 367–374. DOI: 10.1016/j.talanta.2015.12.039.
  • Barbin, D. F.; De, A. L.; Felicio, S. M.; Sun, D.-W.; Nixdorf, S. L.; Hirooka, E. Y. Application of Infrared Spectral Techniques on Quality and Compositional Attributes of Coffee: An Overview. Food Researcher International 2014, 61, 23–32. DOI: 10.1016/j.foodres.2014.01.005.
  • Santos, J. R.; Viegas, O.; Scoa, R. N. M. J. P.; Ferreira, I. M. P. L. V. O.; Rangel, A. O. S. S.; Lopes, J. A. In-Line Monitoring of the Coffee Roasting Process with near Infrared Spectroscopy: Measurement of Sucrose and Colour. Food Chemistry 2016, 208, 103–110. DOI: 10.1016/j.foodchem.2016.03.114.