2,151
Views
26
CrossRef citations to date
0
Altmetric
Original Article

Secondary structures and their effects on antioxidant capacity of antioxidant peptides in yogurt

ORCID Icon, , , , , & show all
Pages 2167-2180 | Received 26 Apr 2018, Accepted 15 Jul 2018, Published online: 04 Sep 2018

References

  • Power, O.; Jakeman, P.; FitzGerald, R. J. Antioxidative Peptides: Enzymatic Production, in Vitro and in Vivo Antioxidant Activity and Potential Applications of Milk-Derived Antioxidative Peptides. Amino Acids 2013, 44, 797–820. DOI: 10.1007/s00726-012-1393-9.
  • Murray, B. A.; FitzGerald, R. J. Angiotensin Converting Enzyme Inhibitory Peptides Derived from Food Proteins: Biochemistry, Bioactivity and Production. Current Pharmaceutical Design 2007, 13, 773–791.
  • Irshad, I.; Kanekanian, A.; Peters, A.; Masud, T. Antioxidant Activity of Bioactive Peptides Derived from Bovine Casein Hydrolysate Fractions. Journal of Food Science and Technology 2013, 1, 1–9.
  • SabeenaFarvin, K. H.; Baron, C. P.; Nielsen, N. S.; Jacobsen, C. Antioxidant Activity of Yoghurt Peptides: Part 1-In Vitro Assays and Evaluation in ω-3 Enriched Milk. Food Chemistry 2010, 123, 1081–1089.
  • SabeenaFarvin, K. H.; Baron, C. P.; Nielsen, N. S.; Otte, J.; Jacobsen, C. Antioxidant Activity of Yoghurt Peptides: Part 2-Characterisation of Peptide Fractions. Food Chemistry 2010, 123, 1090–1097.
  • Hernández-Ledesma, B.; Davalos, A.; Bartolomé, B.; Amigo, L. Preparation of Antioxidant Enzymatic Hydrolysates from α-lactalbumin and β-lactoglobulin. Identification of Active Peptides by HPLC-MS/MS. Journal of Agricultural and Food Chemistry 2005, 53, 588–593.
  • Gómez-Ruiz, J. A.; López-Expósito, I.; Pihlanto, A.; Ramos, M.; Recio, I. Antioxidant Activity of Ovine Casein Hydrolysates: Identification of Active Peptides by HPLC-MS/MS. European Food Research and Technology 2008, 227, 1061–1067.
  • Beermann, C.; Euler, M.; Herzberg, J.; Stahl, B. Anti-Oxidative Capacity of Enzymatically Released Peptides from Soybean Protein Isolate. European Food Research and Technology 2009, 229, 637–644.
  • Chi, C.; Hu, F.; Wang, B.; Ren, X. J.; Deng, S. G. Purification and Characterization of Three Antioxidant Peptides from Protein Hydrolyzate of Croceine Croaker (Pseudosciaena Crocea) Muscle. Food Chemistry 2015, 168, 662–667.
  • Wang, C.; Li, B.; Wang, B.; Xie, N. Degradation and Antioxidant Activities of Peptides and Zinc-Peptide Complexes during in Vitro Gastrointestinal Digestion. Food Chemistry 2015, 173, 733–740.
  • Lin, S. Y.; Liang, R.; Xue, P. Y.; Zhang, S. Y.; Liu, Z. Y.; Dong, X. P. Antioxidant Activity Improvement of Identified Pine Nut Peptides by Pulsed Electric Field (PEF) and the Mechanism Exploration. LWT - Food Science and Technology 2017, 75, 366–372.
  • Han, Y.; Wang, J.; Li, Y.; Hang, Y.; Yin, X.; Li, Q. Circular Dichroism and Infrared Spectroscopic Characterization of Secondary Structure Components of Protein Z during Mashing and Boiling Processes. Food Chemistry 2015, 188, 201–209.
  • Ma, Y. R.; Zhou, M.; Huang, H. H. Changes of Heat‑Treated Soymilks in Bioactive Compounds and Their Antioxidant Activities under in Vitro Gastrointestinal Digestion. European Food Research and Technology 2014, 239, 637–652.
  • Wall, J. S.; Williams, A.; Wooliver, C.; Martin, E. B.; Cheng, X. L.; Eric Heidel, R.; Kennel, S. J. Secondary Structure Propensity and Chirality of the Amyloidophilic Peptide P5 and Its Analogues Impacts Ligand Binding- in Vitro Characterization. Biochemistry and Biophysics Reports 2016, 8, 89–99.
  • Zhou, N.; Tieleman, D. P.; Hans, J. V. Molecular Dynamics Simulations of Bovine Lactoferricin Turning a Helix. BioMetals 2004, 17, 217–223.
  • Liu, T. X.; Zhao, M. M. Physical and Chemical Modification of SPI as a Potential Means to Enhance Small Peptide Contents and Antioxidant Activity Found in Hydrolysates. Innovative Food Science and Emerging Technologies 2010, 11, 677–683.
  • Cian, R. E.; Vioque, J.; Drago, S. R. Structure–Mechanism Relationship of Antioxidant and ACE I Inhibitory Peptides from Wheat Gluten Hydrolysate Fractionated by pH. Food Research International 2015, 69, 216–223.
  • Guebe, D. V.; Nudel, B. C.; Giulietti, A. M. A Simple and Rapid micro-Kjeldahl Method for Total Nitrogen Analysis. Biotechnology Techniques 1991, 5, 427–430.
  • Zulueta, A.; Esteve, M. J.; Frı´Gola, A. ORAC and TEAC Assays Comparison to Measure the Antioxidant Capacity of Food Products. Food Chemistry 2009, 114, 310–316.
  • Cian, R. E.; Martínez-Augustin, O.; Drago, S. Bioactive Properties of Peptides Obtained by Enzymatic Hydrolysis from Protein Byproducts of Porphyra Columbina. Food Research International 2012, 49, 364–372.
  • Seo, H. S.; Kwak, S.; Lee, Y. S. Antioxidative Activities of Histidine Containing Caffeic Acid-Dipeptides. Bioorganic & Medicinal Chemistry 2010, 20, 4266–4272.
  • Vivian, J. T.; Callis, P. R. Mechanisms of Tryptophan Fluorescence Shifts in Proteins. Biophysical Journal 2001, 80, 2093–2109.
  • Lin, S. Y.; Liang, R.; Li, X. F.; Xing, J.; Yuan, Y. Effect of Pulsed Electric Field (PEF) on Structures and Antioxidant Activity of Soybean Source peptides-SHCMN. Food Chemistry 2016, 213, 588–594.
  • Jandaruang, J.; Siritapetawee, J.; Thumanu, K.; Songsiriritthigul, C.; Krittanai, C.; Daduang, S.; Dhiravisit, A.; Thammasirirak, S. The Effects of Temperature and pH on Secondary Structure and Antioxidant Activity of Crocodylus Siamensis Hemoglobin. Protein Journal 2012, 31, 43–50.
  • Zhang, Z. Y.; Zhu, Y. J.; Shi, Y. Y. Molecular Dynamics Simulations of Urea and Thermal-Induced Denaturation of S-Peptide Analogue. Biophysical Chemistry 2001, 89, 145–162.
  • Wallqvist, A.; Covell, D. G.; Thirumalai, D. Hydrophobic Interactions in Aqueous Urea Solutions with Implications for the Mechanism of Protein Denaturation. Journal of the American Chemical Society 1998, 120, 427–428.
  • Haina, Y.; Jianmin, L.; Jinyan, G.; Hailong, X.; Guangsheng, Z.; Gongnian, X.; Hui, X.; Wenchao, W. Microbial Transglutaminase Enhances Antioxidant Activity Ofyogurt through Altering Pattern of Water-Soluble Peptides Andincreasing Release of Amino Acids. International Journal of Food Science and Technology 2018, 53, 1030–1044.
  • Bonomi, F.; Mora, G.; Pagani, M. A.; Iametti, S. Probing Structural Features of Water-Insoluble Proteins by Front-Face Fluorescence. Analytical Biochemistry 2004, 329, 104–111.
  • Wang, Z. J.; Li, Y.; Jiang, L. Z.; Qi, B.; Zhou, L. Relationship between Secondary Structure and Surface Hydrophobicity of Soybean Protein Isolate Subjected to Heat Treatment. Journal of Chemistry 2014, 47, 127–132.
  • Zhang, Z. H.; Hua, Y. F. Urea-Modified Soy Globulin Proteins (7S and11S): Effect of Wett Ability and Secondary Structure on Adhesion. Journal of the American Oil Chemists’ Society 2007, 84, 853–857.
  • Long, G.; Ji, Y.; Pan, H.; Sun, Z.; Li, Y. Characterization of Thermal Denaturation Structure and Morphology of Soy Glycinin by FTIR and SEM. International Journal of Food Properties 2015, 18, 763–774.
  • Heni, B. W.; Nidhi, B.; Hilton, C. D. Stability of Whey Proteins during Thermal Processing: A Review. Food Science and Food Safety 2014, 13, 1235–1251.
  • Dickinson, E.; Parkinson, E. L. Heat-Induced Aggregation of Milk Protein-Stabilized Emulsions: Sensitivity to Processing and Composition. International Dairy Journal 2004, 14, 635–645.