1,686
Views
23
CrossRef citations to date
0
Altmetric
Original Article

Changes in cuticle compositions and crystal structure of ‘Bingtang’ sweet orange fruits (Citrus sinensis) during storage

, , , &
Pages 2411-2427 | Received 07 Jul 2018, Accepted 21 Sep 2018, Published online: 09 Oct 2018

References

  • Domínguez, E.; Cuartero, J.; Heredia, A. An Overview of Plant Cuticle Biomechanics. Plant Science. 2011, 181, 77–84. DOI: 10.1016/j.plantsci.2011.04.010.
  • Järvinen, R.; Kaimainen, M.; Kallio, H. Cutin Composition of Selected Northern Berries and Seeds. Food Chemistry. 2010, 122, 137–144. DOI: 10.1016/j.foodchem.2010.02.030.
  • Szakiel, A.; Paczkowski, C.; Pensec, F.; Bertsch, C. Fruit Cuticular Waxes as a Source of Biologically Active Triterpenoids. Phytochemistry Reviews. 2012, 11, 263–284. DOI: 10.1007/s11101-012-9241-9.
  • Lara, I.; Belge, B.; Goulao, L.F. The Fruit Cuticle as a Modulator of Postharvest Quality. Postharvest Biology and Technology. 2014, 87, 103–112. DOI: 10.1016/j.postharvbio.2013.08.012.
  • Bernard, A.; Joubès, J. Arabidopsis Cuticular Waxes: Advances in Synthesis, Export and Regulation. Progress in Lipid Research. 2013, 52, 110−129. DOI: 10.1016/j.plipres.2012.10.002.
  • Kunst, L.; Samuels, L. Plant Cuticles Shine: Advances in Wax Biosynthesis and Export. Current Opinion in Plant Biology. 2009, 12, 721–727. DOI: 10.1016/j.pbi.2009.09.009.
  • Koch, K.; Ensikat, H.J. The Hydrophobic Coatings of Plant Surfaces: Epicuticular Wax Crystals and Their Morphologies, Crystallinity and Molecular Self-Assembly. Micron. 2008, 39, 759–772. DOI: 10.1016/j.micron.2006.12.008.
  • Yeats, T.H.; Rose, J.K.C. The Formation and Function of Plant Cuticles. Plant Physiology. 2013, 163, 5–20. DOI: 10.1104/pp.113.222737.
  • Koch, K.; Ensikat, H. The Hydrophobic Coatings of Plant Surfaces: Epicuticualr Wax Crystals and Their Morphologies, Crystallinity and Molecular Self-Assembly. Micron. 2008, 39, 759–772. DOI: 10.1016/j.micron.2007.11.010.
  • Shepherd, T.; Griffiths, D.W. The Effect of Stress on Plant Cuticular Waxes. New Phytologist. 2006, 171, 469–499. DOI: 10.1111/j.1469-8137.2006.01756.x.
  • National Bureau of Statistics. China Statistical Yearbook; China Statistical Publishing House: Beijing, 2017.
  • Liu, D.C.; Zeng, Q.; Ji, Q.X.; Liu, C.F.; Liu, S.B.; Liu, Y.A. Comparison of the Ultrastructure and Composition of Fruits’ Cuticular Wax from the Wild-Type ‘Newhall’ Navel Orange (Citrus sinensis [L.] Osbeck Cv. Newhall) and Its Glossy Mutant. Plant Cell Reports. 2012, 31, 2239–2246. DOI: 10.1007/s00299-012-1250-z.
  • Wang, J.Q.; Hao, H.; Liu, R.; Ma, Q.; Xu, J.; Chen, F.; Cheng, Y.; Deng, X. Comparative Analysis of Surface Wax in Mature Fruits between Satsuma Mandarin (Citrus unshiu) and ‘Newhall’ Navel Orange (Citrus sinensis) from the Perspective of Crystal Morphology, Chemical Composition and Key Gene Expression. Food Chemistry. 2014, 153, 177–185. DOI: 10.1016/j.foodchem.2013.12.021.
  • Liu, D.C.; Yang, L.; Zheng, Q.; Wang, Y.C.; Wang, M.L.; Zhuang, X.; Wu, Q.; Liu, C.F.; Liu, S.B.; Liu, Y. Analysis of Cuticular Wax Constituents and Genes that Contribute to the Formation of ‘Glossy Newhall’, a Spontaneous Bud Mutant from the Wild-Type ‘Newhall’ Navel Orange. Plant Molecular Biology. 2015, 88, 573–590. DOI: 10.1007/s11103-015-0343-9.
  • Cajuste, J.F.; González-Candelas, L.; Veyrat, A.; García-Breijo, F.J.; Reig-Armiñana, J.; Lafuente, M.T. Epicuticular Wax Content and Morphology as Related to Ethylene and Storage Performance of ‘Navelate’ Orange Fruit. Postharvest Biology and Technology. 2010, 55, 29−35. DOI: 10.1016/j.postharvbio.2009.07.005.
  • Veraverbeke, E.A.; Lammertyn, J.; Saevels, S.; Nicolaï, B.M. Changes in Chemical Wax Composition of Three Different Apple (Malus domestica Borkh.) Cultivars during Storage. Postharvest Biology and Technology. 2001, 23, 197−208. DOI: 10.1016/S0925-5214(01)00128-4.
  • Curry, E.;. Effects of 1-MCP Applied Postharvest on Epicuticular Wax of Apples (Malus domestica Borkh.) During Storage. Journal of the Science of Food and Agriculture. 2008, 88, 996−1006. DOI: 10.1002/jsfa.3180.
  • Belge, B.; Llovera, M.; Comabella, E.; Gatius, F.; Guillén, P.; Graell, J.; Lara, I. Characterization of Cuticle Composition after Cold Storage of “Celeste” and “Somerset” Sweet Cherry Fruit. Journal of Agricultural and Food Chemistry. 2014, 62, 8722–9729. DOI: 10.1021/jf502650t.
  • Russo, M.; Bonaccorsi, I.; Inferrera, V.; Dugo, P.; Mondello, L. Underestimated Sources of Flavonoids, Limonoids and Dietary Fiber: Availability in Orange’s By-Products. Journal of Functional Foods. 2015, 12, 150–157. DOI: 10.1016/j.jff.2014.11.008.
  • Wibowo, S.; Vervoort, L.; Tomic, J.; Santiago, J.S.; Lemmens, L.; Panozzo, A.; Grauwet, T.; Hendrickx, M.; Van Loey, A. Colour and Carotenoid Changes of Pasteurised Orange Juice during Storage. Food Chemistry. 2015, 171, 354–361. DOI: 10.1016/j.foodchem.2014.09.007.
  • Ebrahimi, A.; Qotbi, A.A.A.; Seidavi, A.R.; Laudadio, V.; Tufarelli, V. Effect of Different Levels of Dried Sweet Orange (Citrus sinensis) Peel on Broiler Chickens Growth Performance. Archiv Fur Tierzucht- Archives of Animal Breeding. 2013, 56, 11–17. DOI: 10.7482/0003-9438-56-002.
  • Pourhossein, Z.; Qotbi, A.A.A.; Seidavi, A.R.; Laudadio, V.; Centoducati, G.; Tufarelli, V. Effect of Different Levels of Dietary Sweet Orange (Citrus sinensis) Peel Extract on Humoral Immune System Responses in Broiler Chickens. Animal Science Journal. 2015, 86, 105–110. DOI: 10.1111/asj.12250.
  • Ying, Y.; Niu, M.; Clarke, A.R.; Harvatine, K.J. Effect of a Citrus Extract in Lactating Dairy Cows. Journal of Dairy Science. 2017, 100, 5468–5471. DOI: 10.3168/jds.2016-12233.
  • Sicari, V.; Pellicano, T.M.; Lagana, V.; Poiana, M., Use of Orange By-Products (Dry Peel) as an Alternative Gelling Agent for Marmalade Production: Evaluation of Antioxidant Activity and Inhibition of HMF Formation during Different Storage Temperature. Journal of Food Processing and Preservation. 2018, 42, e13429. DOI: 10.1111/jfpp.13429.
  • Putnik, P.; Kovacevic, D.B.; Jambrak, A.R.; Barba, F.J.; Cravotto, G.; Binello, A.; Lorenzo, J.M.; Shpigelman, A., Innovative “Green” and Novel Strategies for the Extraction of Bioactive Added Value Compounds from Citrus Wastes-A Review. Molecules. 2017, 22, 680. DOI: 10.3390/molecules22050680.
  • Parsons, E.P.; Popopvsky, S.; Lohrey, G.T.; Lü, S.; Alkalai-Tuvia, S.; Perzelan, Y.; Paran, I.; Fallik, E.; Jenks, M.A. Fruit Cuticle Lipid Composition and Fruit Postharvest Water Loss in an Advanced Backcross Generation of Pepper (Capsicum Sp.). Physiologia Plantarum. 2012, 146, 15–25. DOI: 10.1111/j.1399-3054.2012.01598.x.
  • Parsons, E.P.; Popopvsky, S.; Lohrey, G.T.; Lü, S.; Alkalai-Tuvia, S.; Perzelan, Y.; Bosland, P.; Bebeli, P.J.; Paran, I.; Fallik, E.;; et al. Fruit Cuticle Lipid Composition and Water Loss in a Diverse Collection of Pepper (Capsicum). Physiologia Plantarum. 2013, 149, 160–174. DOI: 10.1111/ppl.12035.
  • Wang, J.Q.; Sun, L.; Xie, L.; He, Y.Z.; Luo, T.; Sheng, L.; Luo, Y.; Zeng, Y.L.; Xu, J.; Deng, X.X.;; et al. Regulation of Cuticle Formation during Fruit Development and Ripening in ‘Newhall’ Navel Orange (Citrus sinensis Osbeck) Revealed by Transcriptomic and Metabolomic Profiling. Plant Science. 2016, 243, 131–144. DOI: 10.1016/j.plantsci.2015.12.010.
  • Dore, A.; Molinu, M.G.; Venditti, T.; D’Hallewin, G. Sodium Carbonate Induces Crystalline Wax Generation, Activates Host-Resistance, and Increases Imazalil Level in Rind Wounds of Oranges, Improving the Control of Green Mold during Storage. Journal of Agricultural and Food Chemistry. 2010, 58, 7297−7304. DOI: 10.1021/jf101013j.
  • Shen, Y.; Yang, H.; Chen, J.; Liu, D.H.; Ye, X.Q. Effect of Waxing and Wrapping on the Phenolic Content and Antioxidant Activity of Citrus during Storage. Journal of Food Processing and Preservation. 2013, 37, 222–231. DOI: 10.1111/j.1745-4549.2011.00639.x.
  • Leide, J.; Hildebrandt, U.; Vogg, G.; Riederer, M. The Positional Sterile (PS) Mutation Affects Cuticular Transpiration and Wax Biosynthesis of Tomato Fruits. Journal of Plant Physiology. 2011, 168, 871–877. DOI: 10.1016/j.jplph.2010.11.014.
  • Vogg, G.; Fischer, S.; Leide, J.; Emmanuel, E.; Jetter, R.; Levy, A.A.; Riederer, M. Tomato Fruit Cuticular Waxes and Their Effects on Transpiration Barrier Properties: Functional Characterization of a Mutant Deficient in a Very-Long-Chain Fatty Acid β-Ketoacyl-CoA Synthase. Journal of Experimental Botany. 2004, 55, 1401–1410. DOI: 10.1093/jxb/erh013.
  • Kosma, D.K.; Bourdenx, B.; Bernard, A.; Parsons, E.P.; Lü, S.; Joubès, J.; Jenks, M.A. The Impact of Water Deficiency on Leaf Cuticle Lipids of Arabidopsis. Plant Physiology. 2009, 151, 1918–1929. DOI: 10.1104/pp.109.146589.
  • Belge, B.; Llovera, M.; Comabella, E.; Graell, J.; Lara, I. Fruit Cuticle Composition of a Melting and a Nonmelting Peach Cultivar. Journal of Agricultural and Food Chemistry. 2014, 62, 3488−3495. DOI: 10.1021/jf5003528.
  • Morice, I.M.; Shortland, F.B. Composition of the Surface Waxes of Apple Fruits and Changes during Storage. Journal of the Science of Food and Agriculture. 1973, 24, 1331−1339. DOI: 10.1002/jsfa.2740241104.
  • Dong, X.; Rao, J.; Huber, D.J.; Chang, X.; Xin, F. Wax Composition of ‘Red Fuji’ Apple Fruit during Development and during Storage after 1-Methylcyclopropene Treatment. Horticulture Environment and Biotechnology. 2012, 53, 288−297. DOI: 10.1007/s13580-012-0036-0.
  • Raffaele, S.; Vailleau, F.; Léger, A.; Joubès, J.; Miersch, O.; Huard, C.; Blée, E.; Mongrand, S.; Domergue, F.; Roby, D. A MYB Transcription Factor Regulates Very-Long-Chain Fatty Acid Biosynthesis for Activation of the Hypersensitive Cell Death Response in Arabidopsis. Plant Cell. 2008, 20, 752–767. DOI: 10.1105/tpc.107.054858.
  • Isaacson, T.; Kosma, D.K.; Matas, A.J.; Buda, G.J.; He, Y.; Yu, B.; Pravitasari, A.; Batteas, J.D.; Stark, R.E.; Jenks, M.A.;; et al. Cutin Deficiency in the Tomato Fruit Cuticle Consistently Affects Resistance to Microbial Infection and Biomechanical Properties, but Not Transpirational Water Loss. Plant Journal. 2009, 60, 363–377. DOI: 10.1111/j.1365-313X.2009.03969.x.
  • Peschel, S.; Knoche, M. Studies on Water Transport through the Sweet Cherry Fruit Surface: XII. Variation in Cuticle Properties among Cultivars. Journal of American Society for Horticultural Science. 2012, 137, 367−375.
  • Ding, Y.; Chang, J.; Ma, Q.; Chen, L.; Liu, S.; Jin, S.; Han, J.; Xu, R.; Zhu, A.; Guo, J. Network Analysis of Postharvest Senescence Process in Citrus Fruits Revealed by Transcriptomic and Metabolomic Profiling. Plant Physiology. 2015, 168, 357–376. DOI: 10.1104/pp.114.255711.
  • Bessire, M.; Chassot, C.; Jacquat, A.C.; Humphry, M.; Borel, S.; Petetot, J.M.; Metraux, J.P.; Nawrath, C. A Permeable Cuticle in Arabidopsis Leads to a Strong Resistance to Botrytis cinerea. Embo Journal. 2007, 26, 2158–2168. DOI: 10.1038/sj.emboj.7601806.
  • L’Haridon, F.; Besson-Bard, A.; Binda, M.; Serrano, M.; Abou-Mansour, E.; Balet, F.; Schoonbeek, H.J.; Hess, S.; Mir, R.; Leon, J.;; et al. A Permeable Cuticle Is Associated with the Release of Reactive Oxygen Species and Induction of Innate Immunity. PLoS Pathogens. 2011, 7, e1002148. DOI: 10.1371/journal.ppat.1002148.
  • Shepherd, T.; Robertson, G.W.; Griffiths, D.W.; Birch, A.N.E. Effects of Environment on the Composition of Epicuticular Wax Esters from Kale and Swede. Phytochemistry. 1997, 46, 83–96. DOI: 10.1016/S0031-9422(97)00272-0.
  • Yang, Y.Q.; Zhou, B.; Zhang, J.; Wang, C.; Liu, C.H.; Liu, Y.L.; Zhu, X.B. Relationships between Cuticular Waxes and Skin Greasiness of Apples during Storage. Postharvest Biology and Technology. 2017, 131, 55–67. DOI: 10.1016/j.postharvbio.2017.05.006.
  • Buschhaus, C.; Herz, H.; Jetter, R. Chemical Composition of the Epicuticular and Intracuticular Wax Layers on the Adaxial Side of Ligustrum vulgare Leaves. New Phytologist. 2007, 176, 311–316. DOI: 10.1111/j.1469-8137.2007.02190.x.
  • Ensikat, H.J.; Boese, M.; Mader, W.; Barthlott, W.; Koch, K. Crystallinity of Plant Epicuticular Waxes: Electron and X-Ray Diffraction Studies. Chemistry and Physics of Lilips. 2006, 144, 45–59. DOI: 10.1016/j.chemphyslip.2006.06.016.
  • Lara, J.M.;. Content, Chemical Composition and Morphology of Epicuticular Wax of Fortune Mandarin Fruits in Relation to Peel Pitting. Journal of the Science of Food and Agriculture. 2000, 80, 1887–1894. DOI: 10.1002/1097-0010(200010)80:13<1887::AID-JSFA730>3.0.CO;2-W.
  • López-Castaňeda, J.; Corrales-García, J.; Terrazas-Salgado, T.; Colinas-León, T. Effect of Vapor Heat Treatments on Weight Loss Reduction and Epicuticular Changes in Six Varieties of Cactus Pear Fruit. Journal of Professional Association for Cactus Development. 2010, 12, 37–47.
  • Baker, E.A.;. The Influence of Environment on Leaf Wax Development in Brassica oleracea Var. Gemmifera. New Phytologist. 1974, 73, 955–966. DOI: 10.1111/nph.1974.73.issue-5.