1,851
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Effect of cytoskeleton on ice crystal growth in cells during freezing

, , ORCID Icon &
Pages 2400-2410 | Received 24 May 2018, Accepted 22 Sep 2018, Published online: 09 Oct 2018

References

  • Fonseca, S.C.; Gil, L.; Manso, M.C.; Cunha, L.C. Modelling the Influence of Storage Temperature and Time after Cutting on Respiration Rate of Diced Red Onions (Allium Cepa L. Cv. Vermelha Da Póvoa). Postharvest Biology & Technology. 2018, 140(C), 27–33. DOI: 10.1016/j.postharvbio.2018.02.003.
  • Hoffmann, N.E.; Bischof, J.C. The Cryobiology of Cryosurgical Injury. Urology. 2002, 60(2), 40–49.
  • Lagerveld, B.W.;. Cryosurgical Induced Injury of Human Cancerous Tissues – How It Works? British Journal of Medical & Surgical Urology. 2012, 5(5), S24–S27. DOI: 10.1016/S1875-9742(12)60006-8.
  • Fujikawa, S.;. Freeze-Fracture and Etching Studies on Membrane Damage on Human Erythrocytes Caused by Formation of Intracellular Ice. Cryobiology. 1980, 17(4), 351–362.
  • Acker, J.P.; Mcgann, L.E. Membrane Damage Occurs during the Formation of Intracellular Ice. Cryo Letters. 2001, 22(4), 241–254.
  • Ninagawa, T.; Eguchi, A.; Kawamura, Y.; Konishi, T. A Study on Ice Crystal Formation Behavior at Intracellular Freezing of Plant Cells Using A High-Speed Camera. Cryobiology. 2016, 73(1), 20–29. DOI: 10.1016/j.cryobiol.2016.06.003.
  • Levitt, J. Responses of Plants to Environmental Stress, 2nd Edition, Chilling, Freezing, and High Temperature Stresses. Physiological Ecology, Ademic Press, New York. 1980, 1, 134.
  • Brown, M.S.;. Texture of Frozen Vegetables: Effect of Freezing Rate on Green Beans. Journal of the Science of Food & Agriculture. 2010, 18(2), 77–81. DOI: 10.1002/jsfa.2740180209.
  • Barbosacanovas, G.V.; Altunakar, B.; Mejialorio, D. Freezing of Fruits and Vegetables. An Agribusiness Alternative for Rural and Semi-Rural Areas. Fao Agricultural Services Bulletin. 2005, 36(9), 3911–3915.
  • Morris, G.J.; Acton, E. Controlled Ice Nucleation in Cryopreservation–A Review. Cryobiology. 2013, 66(2), 85–92. DOI: 10.1016/j.cryobiol.2012.11.007.
  • Bartelsrausch, T.; Bergeron, V.; Cartwright, J.H.E.; Escribano, R. Ice Structures, Patterns, and Processes: A View across the Ice-Fields. Review of Modern Physics. 2012, 84(2), 885–944. DOI: 10.1103/RevModPhys.84.885.
  • Zaragotas, D.; Liolios, N.T.; Anastassopoulos, E. Supercooling, Ice Nucleation and Crystal Growth; a Systematic Study in Plant Samples. Cryobiology. 2016, 72(3), 239–243. DOI: 10.1016/j.cryobiol.2016.03.012.
  • Matsumoto, M.;. Molecular Dynamics of Ice Nucleation and Crystal Growth[J]. 冷凍. 2012, 87, 554–559.
  • Amaral, M.; Miller, A. L.; Magee, N. B. Environmental Scanning Electron Microscopy of Ice Crystal Nucleation and Growth// AGU Fall Meeting. AGU Fall Meeting Abstracts, San Francisco, 2012.
  • Muldrew, K.; Mcgann, L.E. The Osmotic Rupture Hypothesis of Intracellular Freezing Injury. Biophysical Journal. 1994, 66(2 Pt 1), 532–541.
  • Steponkus, P.L.; Dowgert, M.F.; Gordon-Kamm, W.J. Destabilization of the Plasma Membrane of Isolated Plant Protoplasts during a Freeze-Thaw Cycle: The Influence of Cold Acclimation. Cryobiology. 1983, 20(4), 448–465.
  • Petzold, G.; Aguilera, J.M. Ice Morphology: Fundamentals and Technological Applications in Foods. Food Biophysics. 2009, 4(4), 378–396. DOI: 10.1007/s11483-009-9136-5.
  • Lozinsky, V.I.; Plieva, F.M.; Galaev, I.Y.; Mattiasson, B. The Potential of Polymeric Cryogels in Bioseparation. Bioseparation. 2001, 10(4–5), 163–188.
  • Ware, C.B.; Nelson, A.M.; Blau, C.A. Controlled-Rate Freezing of Human ES Cells. Biotechniques. 2005, 38(6), 879–880. DOI: 10.2144/05386ST01.
  • Kasper, J.C.; Friess, W. The Freezing Step in Lyophilization: Physico-Chemical Fundamentals, Freezing Methods and Consequences on Process Performance and Quality Attributes of Biopharmaceuticals. European Journal of Pharmaceutics & Biopharmaceutics. 2011, 78(2), 248–263. DOI: 10.1016/j.ejpb.2011.03.010.
  • Xu, D.; Wang, H.; Wang, Y.; Zhang, Z. Ice Crystal Growth of Living Onion Epidermal Cells as Affected by Freezing Rates. International Journal of Food Properties. 2018, (11). DOI: 10.1080/10942912.2018.1439506.
  • Ohnishi, S.; Fujii, T.; Miyawaki, O. Electrical and Rheological Analysis of Freezing Injury of Agricultural Products. International Journal of Food Properties. 2002, 5(2), 317–332. DOI: 10.1081/JFP-120005788.
  • Orvar, B.L.; Sangwan, V.; Omann, F.; Dhindsa, R.S. Early Steps in Cold Sensing by Plant Cells: The Role of Actin Cytoskeleton and Membrane Fluidity. Plant Journal. 2010, 23(6), 785–794. DOI: 10.1046/j.1365-313x.2000.00845.x.
  • Tuteja, N.; Gill, S. S. 6 Abiotic Stress Response in Plants: Role of Cytoskeleton// Abiotic Stress Response in Plants. Wiley‐VCH Verlag GmbH & Co. KGaA. New Jersey, USA. 2016, 835-7.
  • Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nature Methods. 2012. DOI: 10.1038/nmeth.2089.
  • Wang, Y.; Zhu, K.; Zhang, X.; Ji, H. Applications of Gray-Level Variation Detection Method to Intracellular Ice Formation. Cryobiology. 2018, 81–87. DOI: 10.1016/j.cryobiol.2018.02.006.
  • Yang, G.; Zhang, A.; Xu, L.X. Intracellular Ice Formation and Growth in MCF-7 Cancer Cells. Cryobiology. 2011, 63(1), 38–45. DOI: 10.1016/j.cryobiol.2011.04.007.
  • Päuser, S.; Zschunke, A.; Khuen, A.; Keller, K. Estimation of Water Content and Water Mobility in the Nucleus and Cytoplasm of Xenopus Laevis, Oocytes by NMR Microscopy. Magnetic Resonance Imaging. 1995, 13(2), 269–276.
  • Morrill, G.A.; Kostellow, A.B.; Osterlow, K.; Gupta, R.K. Differences in Hydration State of Nucleus and Cytoplasm of the Amphibian Oocyte. Journal of Membrane Biology. 1996, 153(1), 45–51.
  • Hallett, J.;. Experimental Studies of the Crystallization of Supercooled Water. Journal of the Atmospheric Sciences. 1964, 21(21), 671–682. DOI: 10.1175/1520-0469(1964)021<0671:ESOTCO>2.0.CO;2.
  • Mazur, P.;. Freezing of Living Cells: Mechanisms and Implications. American Journal of Physiology. 1984, 247(3 Pt 1), C125. DOI: 10.1152/ajpcell.1984.247.3.C125.