2,593
Views
20
CrossRef citations to date
0
Altmetric
Original Article

Relationship between accumulated temperature and quality of paddy

, , , , , & show all
Pages 19-33 | Received 19 Jul 2018, Accepted 03 Jan 2019, Published online: 20 Jan 2019

References

  • Tohidi, M.; Sadeghi, M.; Torki-Harchegani, M. Energy and Quality Aspects for Fixed Deep Bed Drying of Paddy. Renewable Sustainable Energy Rev. 2017, 70, 519–528. DOI: 10.1016/j.rser.2016.11.196.
  • Barzegar, M.; Zare, D.; Stroshine, R. L. An Integrated Energy and Quality Approach to Optimization of Green Peas Drying in a Hot Air Infrared-Assisted Vibratory Bed Dryer. J. Food Eng. 2015, 166, 302–315. DOI: 10.1016/j.jfoodeng.2015.06.026.
  • Martynenko, A.; Zheng, W. Electrohydrodynamic Drying of Apple Slices: Energy and Quality Aspects. J. Food Eng. 2016, 168, 215–222. DOI: 10.1016/j.jfoodeng.2015.07.043.
  • Bantle, M.; Eikevik, T. M. A Study of the Energy Efficiency of Convective Drying Systems Assisted by Ultrasound in the Production of Clipfish. J. Cleaner Prod. 2014, 65, 217–223. DOI: 10.1016/j.jclepro.2013.07.016.
  • Firouzi, S.; Alizadeh, M. R.; Haghtalab, D. Energy Consumption and Rice Milling Quality upon Drying Paddy with a Newly-Designed Horizontal Rotary Dryer. Energy. 2017, 119, 629–636. DOI: 10.1016/j.energy.2016.11.026.
  • Sarker, M. S. H.; Ibrahim, M. N.; Abdul Aziz, N.; Punan, M. S. Energy and Exergy Analysis of Industrial Fluidized Bed Drying of Paddy. Energy. 2015, 84, 131–138. DOI: 10.1016/j.energy.2015.02.064.
  • Sarker, M. S. H.; Ibrahim, M. N.; Aziz, N. A.; Salleh, P. M. Energy and Rice Quality Aspects during Drying of Freshly Harvested Paddy with Industrial Inclined Bed Dryer. Energy Conversion Manage. 2014, 77, 389–395. DOI: 10.1016/j.enconman.2013.09.038.
  • Meeso, N.; Nathakaranakule, A.; Madhiyanon, T.; Soponronnarit, S. Modelling of Far-Infrared Irradiation in Paddy Drying Process. J. Food Eng. 2007, 78, 1248–1258. DOI: 10.1016/j.jfoodeng.2006.01.003.
  • Rordprapat, W.; Nathakaranakule, A.; Tia, W.; Soponronnarit, S. Comparative Study of Fluidized Bed Paddy Drying Using Hot Air and Superheated Steam. J. Food Eng. 2005, 71, 28–36. DOI: 10.1016/j.jfoodeng.2004.10.014.
  • Shei, H. J.; Chen, Y. L. Computer Simulation on Intermittent Drying of Rough Rice. Drying Technol. 2007, 20, 615–636. DOI: 10.1081/drt-120002820.
  • Basunia, M. A.; Abe, T. Thin-Layer Solar Drying Characteristics of Rough Rice under Natural Convection. J. Food Eng. 2001, 47, 295–301. DOI: 10.1016/S0260-8774(00)00133-3.
  • Basunia, M. A.; Abe, T. Thin-Layer Drying Characteristics of Rough Rice at Low and High Temperatures. Drying Technol. 1998, 16, 579–595. DOI: 10.1080/07373939808917425.
  • Tanaka, F.; Tanaka, F.; Tanaka, A.; Uchino, T. Mathematical Modelling of Thin-Layer Drying according to Particle Size Distribution in Crushed Feed Rice. Biosyst. Eng. 2015, 136, 87–91. DOI: 10.1016/j.biosystemseng.2015.05.007.
  • Page, G. E.; Factors Influencing The Maximum Rates of Air Drying Shelled Corn in Thin Layers. PhD Thesis, Purdue University, Ann Arbor United States, 1949.
  • Kucuk, H.; Midilli, A.; Kilic, A.; Dincer, I. A Review on Thin-Layer Drying-Curve Equations. Drying Technol. 2014, 32, 757–773. DOI: 10.1080/07373937.2013.873047.
  • Foroughi-Dahr, M.; Golmohammadi, M.; Pourjamshidian, R.; Rajabi-Hamaneh, M.; Hashemi, S. J. On the Characteristics of Thin-Layer Drying Models for Intermittent Drying of Rough Rice. Chem. Eng. Commun. 2014, 202, 1024–1035. DOI: 10.1080/00986445.2014.900049.
  • Midilli, A.; Kucuk, H.; Yapar, Z. A New Model for Single-Layer Drying. Drying Technol. 2002, 20, 1503–1513. DOI: 10.1081/DRT-120005864.
  • Ng, P. P.; Law, C. L.; Tasirin, S. M.; Daud, W. R. W. Drying Characteristics of Malaysian Paddy: Kinetics & Grain Cracking Quality. Drying Technol. 2005, 23, 2477–2489. DOI: 10.1080/07373930500341724.
  • Ondier, G. O.; Siebenmorgen, T. J.; Mauromoustakos, A. Low-Temperature, Low-Relative Humidity Drying of Rough Rice. J. Food Eng. 2010, 100, 545–550. DOI: 10.1016/j.jfoodeng.2010.05.004.
  • Chen, T.; Huang, Q.; Gao, D.; Huang, Z.; Zheng, Y.; Li, Y. Accumulated Temperature as an Indicator to Predict the Stabilizing Process in Sewage Sludge Composting. Acta Ecol. Sin. 2002, 22, 911–915.
  • Dong, J.; Liu, J.; Tao, F.; Xu, X.; Wang, J. Spatio-Temporal Changes in Annual Accumulated Temperature in China and the Effects on Cropping Systems, 1980s to 2000. Clim. Res. 2009, 40, 37–48. DOI: 10.3354/cr00823.
  • Cutforth, H. W.; Shaykewich, C. F. Relationship of Development Rates of Corn from Planting to Silking to Air and Soil Temperature and to Accumulated Thermal Units in a Prairie Environment. Can. J. Plant Sci. 1989, 69, 121–132. DOI: 10.4141/cjps89-014.
  • Qin, X.; Li, Y.; Han, Y.; Hu, Y.; Li, Y.; Wen, X.; Liao, Y.; Siddique, K. H. M. Ridge-Furrow Mulching with Black Plastic Film Improves Maize Yield More than White Plastic Film in Dry Areas with Adequate Accumulated Temperature. Agric. For. Meteorol. 2018, 262, 206–214. DOI: 10.1016/j.agrformet.2018.07.018.
  • Wu, Y.; Wu, W.; Feng, H.; Zhang, Y.; Yan, X. In Intelligent Monitoring and Control of Grain Continuous Drying Process Based on Multi-parameter Corn Accumulated Temperature Model, International Conference on Smart Grid & Electrical Automation, 2017.
  • Prasad, P. V. V.; Craufurd, P. Q.; Summerfield, R. J. Fruit Number in Relation to Pollen Production and Viability in Groundnut Exposed to Short Episodes of Heat Stress. Ann. Bot. 1999, 84, 381–386. DOI: 10.1006/anbo.1999.0926.
  • Hu, X. W.; Fan, Y.; Baskin, C. C.; Baskin, J. M.; Wang, Y. R. Comparison of the Effects of Temperature and Water Potential on Seed Germination of Fabaceae Species from Desert and Subalpine Grassland. Am. J. Bot. 2015, 102, 649–660. DOI: 10.3732/ajb.1400507.
  • Liu, D.; Xin, L. I.; Zheng, H.; Wang, Z. H.University, N. A. Analysis on Changes Of Earth Temperature and Spring Maize Sowing Time in Second Accumulated Temperature Of Heilongjiang Province. Journal Of Maize Sciences 2016, 24, 103-106. DOI: 10.13597/j.cnki.maize.science.20160617
  • Sun, L. L.; Li-Li, X. U.; Yuan-Peng, D. U.; Zhai, H. The Relationship of Effective Accumulated Temperature and Bud Burst in Grapevine. Plant Physiol. J. 2016. DOI: 10.13592/j.cnki.ppj.2016.0232.
  • Zhao, D.; Wu, S. Spatial and Temporal Variability of Key Bio-Temperature Indicators on the Qinghai-Tibetan Plateau for the Period 1961–2013. Int. J. Climatol. 2016, 36, 2083–2092. DOI: 10.1002/joc.4482.
  • Liu, Y.; Hou, P.; Xie, R.; Hao, W.; Li, S.; Mei, X. Spatial Variation and Improving Measures of the Utilization Efficiency of Accumulated Temperature. Crop Sci. 2015, 55, 1806–1807. doi: 10.2135/cropsci2014.10.0735.
  • Chen, Y.; Xue, Q.; Zhenfa, L. I.; Liu, S.; Chun, L. I.; Gong, Z.; Center, T. C.Comparison of Effective Accumulated Temperature of Different Granularities in Simulating Development Stage of Cucumber in Greenhouse. Northern Horticulture 2016, 11, 41-45. DOI: 10.11937/bfyy.201611011.
  • Ni, X.; Gunawan, G.; Brown, S. L.; Sumner, P. E.; Ruberson, J. R.; Buntin, G. D.; Holbrook, C. C.; Lee, R. D.; Streett, D. A.; Throne, J. E. Insect-Attracting and Antimicrobial Properties of Antifreeze for Monitoring Insect Pests and Natural Enemies in Stored Corn. J. Econ. Entomol. 2008, 101, 631. DOI: 10.1603/0022-0493(2008)101[631:iaapoa]2.0.co;2.
  • Li, D. X.; Kang, Z. K.; Wang, J. Y.; Wang, H. W.; Dong, J. F.; Liang, S. L. Threshold Temperature and Effective Accumulated Temperature of Peach Fruit Borer, Carposina Sasakii. Chin. Bull. Entomol. 2010, 47, 923–926. DOI: 10.3724/SP.J.1238.2010.00550.
  • Zheng, X. Z.; Zhao, X. D.Calculation of taste value and study on drying quality of rice. Transactions of the Chinese Society of Agricultural Machinery 2000, 31, 54-60.
  • Wu, W. F.; Jin, Y. A Vertical Hot and Humid Rate Controlled Thin-Layer Drying Test Bed and Drying Method. 2016, 201610184049.6.
  • ElGamal, R. A.; Kishk, S. S.; ElMasry, G. M. Validation of CFD Models for the Deep-Bed Drying of Rice Using Thermal Imaging. Biosyst. Eng. 2017, 161, 135–144. DOI: 10.1016/j.biosystemseng.2017.06.018.
  • Özdemir, M. B.; Aktaş, M.; Şevik, S.; Khanlari, A. Modeling of a Convective-Infrared Kiwifruit Drying Process. Int. J. Hydrogen Energy. 2017, 42, 18005–18013. DOI: 10.1016/j.ijhydene.2017.01.012.
  • Corrêa, P. C.; de Oliveira, G. H. H.; de Oliveira, A. P. L. R.; Botelho, F. M.; Goneli, A. L. D. Thermodynamic Properties of Drying Process and Water Absorption of Rice Grains. CyTA J. Food. 2016, 15, 204–210. DOI: 10.1080/19476337.2016.1238012.
  • Wang, R.; Zhang, M.; Mujumdar, A. S.; Sun, J.-C. Microwave Freeze–Drying Characteristics and Sensory Quality of Instant Vegetable Soup. Drying Technol. 2009, 27, 962–968. DOI: 10.1080/07373930902902040.
  • Mohan, V. P. C.; Talukdar, P. Experimental Studies for Convective Drying of Potato. Heat Transfer. Eng. 2014, 35, 1288–1297. DOI: 10.1080/01457632.2013.876844.
  • Abud-Archila, M.; Courtois, F.; Bonazzi, C.; Bimbenet, J. J. A Compartmental Model Of Thin-Layer Drying Kinetics Of Rough Rice. Drying Technol. 2007, 18, 1389–1414. DOI: 10.1080/07373930008917784.
  • Wang, D. Y.; Cheng-Hua, L. I.; Gong, Y. J.; Wang, Q. Influence of Drying Parameters on Additional Crack Percentage of Rice in a Deep Fixed-bed. Journal of Shenyang Agricultural University 2005, 36, 482-484.
  • Fu, Z. Y.; Hua, Y. L. Analysis of peak stress in rice kernel during moisture absorption. Transactions of the Chinese Society of Agricultural Machinery 2000, 31, 59-62.