2,522
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Composition of phenolic and antioxidant activity of water chestnut peel during digestion in vitro as affected by blanching time

, , , , , , & show all
Pages 71-83 | Received 06 Sep 2018, Accepted 15 Jan 2019, Published online: 07 Feb 2019

References

  • Wu, S.; Yu, L. Preparation and Characterisation of the Oligosaccharides Derived from Chinese Water Chestnut Polysaccharides. Food Chem. 2015, 181, 15–18. DOI: 10.1016/j.foodchem.2015.02.066.
  • Gao, M.; Jiang, W.; Wei, S.; Lin, Z.; Cai, B.; Yang, L.; Luo, C.; He, X.; Tan, J.; Chen, L. High-Efficiency Propagation of Chinese Water Chestnut [Eleocharis Dulcis (Burm.F.) Trin. Ex Hensch] Using a Temporary Immersion Bioreactor System. Plant Cell Tissue Organ Culture. 2015, 121(3), 761–772. DOI: 10.1007/s11240-015-0732-4.
  • Sun, J.; You, Y.; Garciagarcia, E.; Long, X.; Wang, J. Biochemical Properties and Potential Endogenous Substrates of Polyphenoloxidase from Chufa (Eleocharis Tuberosa) Corms. Food Chem. 2010, 118(3), 799–803. DOI: 10.1016/j.foodchem.2009.05.065.
  • Zhan, G.; Pan, L.; Tu, K.; Jiao, S. Antitumor, Antioxidant, and Nitrite Scavenging Effects of Chinese Water Chestnut (Eleocharis Dulcis) Peel Flavonoids. J. Food Sci. 2016, 81(10), 2578–2586. DOI: 10.1111/1750-3841.13434.
  • Zhan, G.; Pan, L.; Mao, S.; Zhang, W.; Wei, Y.; Tu, K. Study on Antibacterial Properties and Major Bioactive Constituents of Chinese Water Chestnut (Eleocharis Dulcis) Peels Extracts/Fractions. Eur. Food Res. Technol. 2014, 238(5), 789–796. DOI: 10.1007/s00217-013-2151-2.
  • Luo, Y.; Li, X.; He, J.; Su, J.; Peng, L.; Wu, X.; Du, R.; Zhao, Q. Isolation, Characterisation, and Antioxidant Activities of Flavonoids from Chufa (Eleocharis Tuberosa) Peels. Food Chem. 2014, 164, 30–35. DOI: 10.1016/j.foodchem.2014.04.103.
  • Kratchanova, M.; Denev, P.; Ciz, M.; Lojek, A.; Mihailov, A. Evaluation of Antioxidant Activity of Medicinal Plants Containing Polyphenol Compounds. Comparison of Two Extraction Systems. Acta Biochim. Pol. 2010, 57(2), 229–234.
  • Abadgarcia, B.; Garmonlobato, S.; Sanchezilarduya, M. B.; Berrueta, L. A.; Gallo, B.; Vicente, F.; Alonsosalces, R. M. Polyphenolic Contents in Citrus Fruit Juices: Authenticity Assessment. Eur. Food Res. Technol. 2014, 238(5), 803–818. DOI: 10.1007/s00217-014-2160-9.
  • Majo, D. D.; La Neve, L.; La Guardia, M.; Casuccio, A.; Giammanco, M. The Influence of Two Different pH Levels on the Antioxidant Properties of Flavonols, Flavan-3-Ols, Phenolic Acids and Aldehyde Compounds Analysed in Synthetic Wine and in a Phosphate Buffer. J. Food Compost. Anal. 2011, 24(2), 265–269. DOI: 10.1016/j.jfca.2010.09.013.
  • Ozdal, T.; Capanoglu, E.; Altay, F. A Review on Protein–Phenolic Interactions and Associated Changes. Food Res. Int. 2013, 51(2), 954–970. DOI: 10.1016/j.foodres.2013.02.009.
  • Hossain, M. A.; Rahman, S. M. M. Total Phenolics, Flavonoids and Antioxidant Activity of Tropical Fruit Pineapple. Food Res. Int. 2011, 44(3), 672–676. DOI: 10.1016/j.foodres.2010.11.036.
  • Lee, K. H.; Cho, J.; Lee, H. J.; Park, K. Y.; Ma, Y.; Lee, S.; Cho, J. A.; Kim, W.; Park, K.; Moon, J. Isolation and Identification of Phenolic Compounds from an Asian Pear (Pyrus Pyrifolia Nakai) Fruit Peel. Food Sci. Biotechnol. 2011, 20(6), 1539–1545. DOI: 10.1007/s10068-011-0213-4.
  • Fu, T.-J.; Abbott, U. R.; Hatzos, C. Digestibility of Food Allergens and Nonallergenic Proteins in Simulated Gastric Fluid and Simulated Intestinal FluidA Comparative Study. J. Agric. Food Chem. 2002, 50(24), 7154–7160. DOI: 10.1021/jf020599h.
  • Su, D.; Li, N.; Chen, M.; Yuan, Y.; He, S.; Wang, Y.; Wu, Q.; Li, L.; Yang, H.; Zeng, Q. Effects of Invitro Digestion on the Composition of Flavonoids and Antioxidant Activities of the Lotus Leaf at Different Growth Stages. Int. J. Food Sci. Technol. 2018, 53, 1631–1639. DOI: 10.1111/ijfs.13746.
  • Bouayed, J.; Hoffmann, L.; Bohn, T. Total Phenolics, Flavonoids, Anthocyanins and Antioxidant Activity following Simulated Gastro-Intestinal Digestion and Dialysis of Apple Varieties: Bioaccessibility and Potential Uptake. Food Chem. 2011, 128(1), 14–21. DOI: 10.1016/j.foodchem.2011.02.052.
  • Thaipong, K.; Boonprakob, U.; Crosby, K. M.; Cisneroszevallos, L.; Byrne, D. H. Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. J. Food Compost. Anal. 2006, 19, 669–675. DOI: 10.1016/j.jfca.2006.01.003.
  • Condehernandez, L. A.; Guerrerobeltran, J. A. Total Phenolics and Antioxidant Activity of Piper Auritum and Porophyllum Ruderale. Food Chem. 2014, 142, 455–460. DOI: 10.1016/j.foodchem.2013.07.078.
  • Papoutsis, K.; Pristijono, P.; Golding, J. B.; Stathopoulos, C. E.; Bowyer, M. C.; Scarlett, C. J.; Vuong, Q. V. Enhancement of the Total Phenolic Compounds and Antioxidant Activity of Aqueous Citrus Limon L. Pomace Extract Using Microwave Pretreatment on the Dry Powder. J. Food Process. Preserv. 2017, 41(5), e13152. DOI: 10.1111/jfpp.13152.
  • Ursache, F. M.; Ghinea, I. O.; Turturică, M.; Aprodu, I.; Râpeanu, G.; Stănciuc, N. Phytochemicals Content and Antioxidant Properties of Sea Buckthorn (Hippophae Rhamnoides L.) As Affected by Heat Treatment - Quantitative Spectroscopic and Kinetic Approaches. Food Chem. 2017, 233, 442–449. DOI: 10.1016/j.foodchem.2017.04.107.
  • Koehnlein, E. A.; Koehnlein, E. M.; Correa, R. C. G.; Nishida, V. S.; Correa, V. G.; Bracht, A.; Peralta, R. M. Analysis of a Whole Diet in Terms of Phenolic Content and Antioxidant Capacity: Effects of a Simulated Gastrointestinal Digestion. Int. J. Food Sci. Nutr. 2016, 67(6), 614–623. DOI: 10.1080/09637486.2016.1186156.
  • Su, D.; Zhang, R.; Hou, F.; Zhang, M.; Guo, J.; Huang, F.; Deng, Y.; Wei, Z. Comparison of the Free and Bound Phenolic Profiles and Cellular Antioxidant Activities of Litchi Pulp Extracts from Different Solvents. BMC Complementary Altern. Med. 2014, 14(1), 9. DOI: 10.1186/1472-6882-14-9.
  • Green, R. J.; Murphy, A. S.; Schulz, B.; Watkins, B. A.; Ferruzzi, M. G. Common Tea Formulations Modulate in Vitro Digestive Recovery of Green Tea Catechins. Mol. Nutr. Food Res. 2007, 51(9), 1152–1162. DOI: 10.1002/mnfr.200700086.
  • Tenore, G. C.; Campiglia, P.; Giannetti, D.; Novellino, E. Simulated Gastrointestinal Digestion, Intestinal Permeation and Plasma Protein Interaction of White, Green, and Black Tea Polyphenols. Food Chem. 2015, 169, 320–326. DOI: 10.1016/j.foodchem.2014.08.006.
  • Bouayed, J.; Deuser, H.; Hoffmann, L.; Bohn, T. Bioaccessible and Dialysable Polyphenols in Selected Apple Varieties following in Vitro Digestion Vs. Their Native Patterns. Food Chem. 2012, 131(4), 1466–1472. DOI: 10.1016/j.foodchem.2011.10.030.
  • Tagliazucchi, D.; Verzelloni, E.; Bertolini, D.; Conte, A. In Vitro Bio-Accessibility and Antioxidant Activity of Grape Polyphenols. Food Chem. 2010, 120(2), 599–606. DOI: 10.1016/j.foodchem.2009.10.030.
  • Correabetanzo, J.; Allenvercoe, E.; Mcdonald, J. A. K.; Schroeter, K.; Corredig, M.; Paliyath, G. Stability and Biological Activity of Wild Blueberry (Vaccinium Angustifolium) Polyphenols during Simulated in Vitro Gastrointestinal Digestion. Food Chem. 2014, 165, 522–531. DOI: 10.1016/j.foodchem.2014.05.135.
  • Arroyomaya, I. J.; Camposteran, J.; Hernandezarana, A.; Mcclements, D. J. Characterization of Flavonoid-Protein Interactions Using Fluorescence Spectroscopy: Binding of Pelargonidin to Dairy Proteins. Food Chem. 2016, 213, 431–439. DOI: 10.1016/j.foodchem.2016.06.105.
  • Silva, F. G. D. E.; Miralles, B.; Hernandezledesma, B.; Amigo, L.; Iglesias, A. H.; Reyes, F. G. R.; Netto, F. M. Influence of Protein-Phenolic Complex on the Antioxidant Capacity of Flaxseed (Linum Usitatissimum L.) Products. J. Agric. Food Chem. 2017, 65(4), 800–809. DOI: 10.1021/acs.jafc.6b04639.
  • Choi, Y.; Lee, S.; Chun, J.; Lee, H.; Lee, J. Influence of Heat Treatment on the Antioxidant Activities and Polyphenolic Compounds of Shiitake (Lentinus Edodes) Mushroom. Food Chem. 2006, 99(2), 381–387. DOI: 10.1016/j.foodchem.2005.08.004.
  • Jeong, S.; Kim, S.; Kim, D.; Jo, S.; Nam, K. C.; Ahn, D. U.; Lee, S. Effect of Heat Treatment on the Antioxidant Activity of Extracts from Citrus Peels. J. Agric Food Chemi. 2004, 52(11), 3389–3393. DOI: 10.1021/jf049899k.
  • Peng, L.; Jiang, Y. Effects of Heat Treatment on the Quality of Fresh-Cut Chinese Water Chestnut. Int. J. Food Sci. Technol. 2010, 39(2), 143–148. DOI: 10.1046/j.0950-5423.2003.00767.x.
  • Xu, G.; Ye, X.; Chen, J.; Liu, D. Effect of Heat Treatment on the Phenolic Compounds and Antioxidant Capacity of Citrus Peel Extract. J. Agric. Food Chem. 2007, 55(2), 330–335. DOI: 10.1021/jf062517l.
  • Islam, T.; Yu, X.; Badwal, T. S.; Xu, B. Comparative Studies on Phenolic Profiles, Antioxidant Capacities and Carotenoid Contents of Red Goji Berry (Lycium Barbarum) and Black Goji Berry (Lycium Ruthenicum). Chem. Cent. J. 2017, 11(1), 59. DOI: 10.1186/s13065-017-0287-z.
  • Shumoy, H.; Gabaza, M.; Vandevelde, J.; Raes, K. Soluble and Bound Phenolic Contents and Antioxidant Capacity of Tef Injera as Affected by Traditional Fermentation. J. Food Compost. Anal. 2017, 58, 52–59. DOI: 10.1016/j.jfca.2017.01.004.