4,685
Views
11
CrossRef citations to date
0
Altmetric
Original Article

Characterization of phenolic compounds from Phyllanthus emblica fruits using HPLC-ESI-TOF-MS as affected by an optimized microwave-assisted extraction

, , , , , , , , , & show all
Pages 330-342 | Received 05 Jul 2018, Accepted 12 Dec 2018, Published online: 04 Mar 2019

References

  • Tabaraki, R.; Heidarizadi, E.; Benvidi, A. Optimization of Ultrasonic-Assisted Extraction of Pomegranate (Punica Granatum L.) Peel Antioxidants by Response Surface Methodology. Sep. Purif. Technol. 2012, 98, 16–23. DOI: 10.1016/j.seppur.2012.06.038.
  • Samaram, S.; Mirhosseini, H.; Tan, C. P.; Ghazali, H. M.; Bordbar, S.; Serjouie, A. Optimisation of Ultrasound-Assisted Extraction of Oil from Papaya Seed by Response Surface Methodology: Oil Recovery, Radical Scavenging Antioxidant Activity, and Oxidation Stability. Food Chem. 2015, 172, 7–17. DOI: 10.1016/j.foodchem.2014.08.068.
  • Carocho, M.; Ferreira, I. C. F. R. A Review on Antioxidants, Prooxidants and Related Controversy: Natural and Synthetic Compounds, Screening and Analysis Methodologies and Future Perspectives. Food Chem. Toxicol. 2013, 51, 15–25. DOI: 10.1016/j.fct.2012.09.021.
  • Dahmoune, F.; Nayak, B.; Moussi, K.; Remini, H.; Madani, K. Optimization of Microwave-Assisted Extraction of Polyphenols from Myrtus Communis L. Leaves. Food Chem. 2015, 166, 585–595. DOI: 10.1016/j.foodchem.2014.06.066.
  • Da Silva, B. V.; Barreira, J. C. M.; Oliveira, M. B. P. Natural Phytochemicals and Probiotics as Bioactive Ingredients for Functional Foods: Extraction, Biochemistry and Protected-Delivery Technologies. Trends Food Sci. Technol. 2016, 50, 144–158. DOI: 10.1016/j.tifs.2015.12.007.
  • Kim, H. Y.; Okubo, T.; Juneja, L. R.; Yokozawa, T. The Protective Role of Amla (Emblica Officinalis Gaertn.) Against Fructose-Induced Metabolic Syndrome in a Rat Model. Br. J. Nutr. 2010, 103, 502–512. DOI: 10.1017/S0007114509991978.
  • Mishra, P.; Mishra, S.; Mahanta, C. L. Effect of Maltodextrin Concentration and Inlet Temperature during Spray Drying on Physicochemical and Antioxidant Properties of Amla (Emblica Officinalis) Juice Powder. Food Bioprod. Process. 2014, 92, 252–258. DOI: 10.1016/j.fbp.2013.08.003.
  • Liu, X.; Zhao, M.; Wang, J.; Yang, B.; Jiang, Y. Antioxidant Activity of Methanolic Extract of Emblica Fruit (Phyllanthus Emblica L.) From Six Regions in China. J. Food Compost. Anal. 2008, 21, 219–228. DOI: 10.1016/j.jfca.2007.10.001.
  • Liu, X.; Zhao, M.; Wu, K.; Chai, X.; Yu, H.; Tao, Z.; Wang, J. Immunomodulatory and Anticancer Activities of Phenolics from Emblica Fruit (Phyllanthus Emblica L.). Food Chem. 2012, 131, 685–690. DOI: 10.1016/j.foodchem.2011.09.063.
  • Nampoothiri, S. V.; Prathapan, A.; Cherian, O. L.; Raghu, K. G.; Venugopalan, V. V.; Sundaresan, A. In Vitro Antioxidant and Inhibitory Potential of Terminalia Bellerica and Emblica Officinalis Fruits against LDL Oxidation and Key Enzymes Linked to Type 2 Diabetes. Food Chem. Toxicol. 2011, 49, 125–131. DOI: 10.1016/j.fct.2010.10.006.
  • Liu, Q.; Wang, Y. F.; Chen, R. J.; Zhang, M. Y.; Wang, Y. F.; Yang, C. R.; Zhang, Y. J. Anti-Coxsackie Virus B3 Norsesquiterpenoids from the Roots of Phyllanthus Emblica. J. Nat. Prod. 2009, 72, 969–972. DOI: 10.1021/np800792d.
  • Lv, J. J.; Wang, Y. F.; Zhang, J. M.; Yu, S.; Wang, D.; Zhu, H. T.; Cheng, R. R.; Yang, C. R.; Xu, M.; Zhang, Y. J. Anti-Hepatitis B Virus Activities and Absolute Configurations of Sesquiterpenoid Glycosides from Phyllanthus Emblica. Org. Biomol. Chem. 2014, 12, 8764–8774. DOI: 10.1039/C4OB01196A.
  • Luo, W.; Zhao, M.; Yang, B.; Shen, G.; Rao, G. Identification of Bioactive Compounds in Phyllenthus Emblica L. Fruit and Their Free Radical Scavenging Activities. Food Chem. 2009, 114, 499–504. DOI: 10.1016/j.foodchem.2008.09.077.
  • Liu, X.; Cui, C.; Zhao, M.; Wang, J.; Luo, W.; Yang, B.; Jiang, Y. Identification of Phenolics in the Fruit of Emblica (Phyllanthus Emblica L.) And Their Antioxidant Activities. Food Chem. 2008, 109, 909–915. DOI: 10.1016/j.foodchem.2008.01.071.
  • Luo, W.; Wen, L.; Zhao, M.; Yang, B.; Ren, J.; Shen, G.; Rao, G. Structural Identification of Isomallotusinin and Other Phenolics in Phyllanthus Emblica L. Fruit Hull. Food Chem. 2012, 132, 1527–1533. DOI: 10.1016/j.foodchem.2011.11.146.
  • Zhang, Y. J.; Tanaka, T.; Yang, C. R.; Kouno, I. New Phenolic Constituents from the Fruit Juice of Phyllanthus Emblica. Chem. Pharm. Bull. 2001, 49, 537–540.
  • Luo, W.; Zhao, M.; Yang, B.; Ren, J.; Shen, G.; Rao, G. Antioxidant and Antiproliferative Capacities of Phenolics Purified from Phyllanthus Emblica L. Fruit. Food Chem. 2011, 126, 277–282. DOI: 10.1016/j.foodchem.2010.11.018.
  • Yang, B.; Kortesniemi, M.; Liu, P.; Karonen, M.; Salminen, J.-P. Analysis of Hydrolyzable Tannins and Other Phenolic Compounds in Emblic Leafflower (Phyllanthus Emblica L.) Fruits by High Performance Liquid Chromatography–Electrospray Ionization Mass Spectrometry. J. Agric. Food Chem. 2012, 60, 8672–8683. DOI: 10.1021/jf302925v.
  • Zhang, Y. J.; Nagao, T.; Tanaka, T.; Yang, C. R.; Okabe, H.; Kouno, I. Antiproliferative Activity of the Main Constituents from Phyllanthus Emblica. Biol. Pharm. Bull. 2004, 27, 251–255.
  • Li, Y.; Chen, J.; Cao, L.; Li, L.; Wang, F.; Liao, Z.; Chen, J.; Wu, S.; Zhang, L. Characterization of a Novel Polysaccharide Isolated from Phyllanthus Emblica L. And Analysis of Its Antioxidant Activities. J. Food Sci. Technol. (Mysore). 2018, 55, 1–7.
  • Şahin, S.; Aybastıer, Ö.; Işık, E. Optimisation of Ultrasonic-Assisted Extraction of Antioxidant Compounds from Artemisia Absinthium Using Response Surface Methodology. Food Chem. 2013, 141, 1361–1368. DOI: 10.1016/j.foodchem.2013.04.003.
  • Hammi, K. M.; Jdey, A.; Abdelly, C.; Majdoub, H.; Ksouri, R. Optimization of Ultrasound-Assisted Extraction of Antioxidant Compounds from Tunisian Zizyphus Lotus Fruits Using Response Surface Methodology. Food Chem. 2015, 184, 80–89. DOI: 10.1016/j.foodchem.2015.03.047.
  • Yang, Y.; Li, J.; Zu, Y.; Fu, Y.; Luo, M.; Wu, N.; Liu, X. Optimisation of Microwave-Assisted Enzymatic Extraction of Corilagin and Geraniin from Geranium Sibiricum Linne and Evaluation of Antioxidant Activity. Food Chem. 2010, 122, 373–380. DOI: 10.1016/j.foodchem.2010.02.061.
  • Pérez-Serradilla, J. A.; de Castro, M. D. Luque Microwave-Assisted Extraction of Phenolic Compounds from Wine Lees and Spray-Drying of the Extract. Food Chem. 2011, 124, 1652–1659. DOI: 10.1016/j.foodchem.2010.07.046.
  • Taamalli, A.; Arráez-Román, D.; Ibañez, E.; Zarrouk, M.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Optimization of Microwave-Assisted Extraction for the Characterization of Olive Leaf Phenolic Compounds by Using HPLC-ESI-TOF-MS/IT-MS2. J. Agric. Food Chem. 2012, 60, 791–798. DOI: 10.1021/jf204233u.
  • Chen, J.; Wu, S.; Li, Y. Chemical Composition, Antioxidant and Antibacterial Activities of Essential Oil from Leaves of Alpinia Zerumbet ‘Variegata’. Res. J. Biotechnol. 2014, 9, 50–57.
  • Huang, W.; Xue, A.; Niu, H.; Jia, Z.; Wang, J. Optimised Ultrasonic-Assisted Extraction of Flavonoids from Folium Eucommiae and Evaluation of Antioxidant Activity in Multi-Test Systems in Vitro. Food Chem. 2009, 114, 1147–1154. DOI: 10.1016/j.foodchem.2008.10.079.
  • Karazhiyan, H.; Razavi, S. M. A.; Phillips, G. O. Extraction Optimization of a Hydrocolloid Extract from Cress Seed (Lepidium Sativum) Using Response Surface Methodology. Food Hydrocolloids. 2011, 25, 915–920. DOI: 10.1016/j.foodhyd.2010.08.022.
  • Touriño, S.; Lizárraga, D.; Carreras, A.; Lorenzo, S.; Ugartondo, V.; Mitjans, M.; Vinardell, M. P.; Juliá, L.; Cascante, M.; Torres, J. L. Highly Galloylated Tannin Fractions from Witch Hazel (Hamamelis Virginiana) Bark: Electron Transfer Capacity, in Vitro Antioxidant Activity, and Effects on Skin-Related Cells. Chem. Res. Toxicol. 2008, 21, 696–704. DOI: 10.1021/tx700425n.
  • Duckstein, S. M.; Stintzing, F. C. Investigation on the Phenolic Constituents in Hamamelis Virginiana Leaves by HPLC-DAD and LC-MS/MS. Anal. Bioanal. Chem. 2011, 401, 677–688. DOI: 10.1007/s00216-011-5111-3.
  • Zhang, Z.; Liao, L.; Moore, J.; Wu, T.; Wang, Z. Antioxidant Phenolic Compounds from Walnut Kernels (Juglans Regia L.). Food Chem. 2009, 113, 160–165. DOI: 10.1016/j.foodchem.2008.07.061.
  • Chang, C.-L.; Wu, R.-T. Quantification of (+)-Catechin and (−)-Epicatechin in Coconut Water by LC–MS. Food Chem. 2011, 126, 710–717. DOI: 10.1016/j.foodchem.2010.11.034.
  • Huang, H.; Sun, L.; Yang, L.; Zhou, J.; Yin, P.; Li, K.; Xue, Q.; Li, X.; Liu, Y. Assessment of the Bioactive Phenolic Composition of Acer Truncatum Seed Coat as a Byproduct of Seed Oil. Ind. Crops Prod. 2018, 118, 11–19. DOI: 10.1016/j.indcrop.2018.03.030.
  • Yamazaki, E.; Inagaki, M.; Kurita, O.; Inoue, T. Antioxidant Activity of Japanese Pepper (Zanthoxylum Piperitum DC.) Fruit. Food Chem. 2007, 100, 171–177. DOI: 10.1016/j.foodchem.2005.09.036.
  • Choi, J. S.; Chung, H. Y.; Kang, S. S.; Jung, M. J.; Kim, J. W.; No, J. K.; Jung, H. A. The Structure–Activity Relationship of Flavonoids as Scavengers of Peroxynitrite. Phytotherapy Res. 2002, 16, 232–235. DOI: 10.1002/ptr.828.