1,529
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Roasted tree peony (Paeonia ostii) seed oil: Benzoic acid levels and physicochemical characteristics

, , , &
Pages 499-510 | Received 26 Oct 2018, Accepted 22 Feb 2019, Published online: 26 Mar 2019

References

  • Wu, J.; Cheng, F.-Y.; Cai, C. F.; Zhong, Y.; Jie, X. Association Mapping for Floral Traits in Cultivated Paeonia Rockii Based on SSR Markers. Mol. Genet. Genomics. 2016, 292, 187–200. DOI: 10.1007/s00438-016-1266-0.
  • Xu, -X.-X.; Cheng, F.-Y.; Xian, H.-L.; Peng, L.-P. Genetic Diversity and Population Structure of Endangered Endemic Paeonia Jishanensis, in China and Conservation Implications. Biochem. Syst. Ecol. 2016, 66, 319–325. DOI: 10.1016/j.bse.2016.05.003.
  • Li, -S.-S.; Yuan, R.-Y.; Chen, L.-G.; Wang, L.-S.; Hao, X.-H.; Wang, L.-J.; Zheng, X.-C.; Du, H. Systematic Qualitative and Quantitative Assessment of Fatty Acids in the Seeds of 60 Tree Peony (Paeonia Section Moutan DC.) Cultivars by GC-MS. Food Chem. 2015, 173, 133–140. DOI: 10.1016/j.foodchem.2014.10.017.
  • Gao, -L.-L.; Li, Y.-Q.; Wang, Z.-S.; Sun, G.-J.; Mo, H.-Z. Physicochemical Characteristics and Functionality of Tree Peony (Paeonia Suf- Fruticosa Andr.) Seed Protein. Food Chem. 2018, 240, 980–988. DOI: 10.1016/j.foodchem.2017.07.124.
  • Cui, H.-L.; Cheng, F.-Y.; Peng, L.-P. Determination of the Fatty Acid Composition in Tree Peony Seeds Using Near-Infrared Spectroscopy. J. Am. Chem. Soc. 2016, 93, 943–952.
  • Zhang, -X.-X.; Shi, -Q.-Q.; Ji, D.; Niu, L.-X.; Zhang, Y.-L. Determination of the Phenolic Content, Profile, and Antioxidant Activity of Seeds from Nine Tree Peony (Paeonia Section Moutan DC.) Species Native to China. Food Res. Int. 2017, 97, 141–148. DOI: 10.1016/j.foodres.2017.03.018.
  • Mao, Y.-M.; Han, J.-H.; Tian, F.; Tang, X.; Hu, Y.-H.; Guan, Y. Chemical Composition Analysis, Sensory, and Feasibility Study of Tree Peony Seed. J. Food Sci. 2017, 82, 553–561. DOI: 10.1111/1750-3841.13593.
  • Zhang, W.-Z.; Wang, R.; Yuan, Y.-H.; Yang, T.-K.; Liu, S.-Q. Changes in Volatiles of Palm Kernel Oil before and after Kernel Roasting. LWT - Food Sci. Technol. 2016, 73, 432–441. DOI: 10.1016/j.lwt.2016.06.051.
  • Park, M. H.; Seol, N. G.; Chang, P.-S.; Yoon, S. H.; Lee, J. H. Effects of Roasting Conditions on the Physicochemical Properties and Volatile Distribution in Perilla Oils (Perilla Frutescens Var. Japonica). J. Food Sci. 2011, 76, C808–816. DOI: 10.1111/j.1750-3841.2011.02214.x.
  • Liu, X.-Y.; Jin, Q.-Z.; Liu, Y.-F.; Huang, J.-H.; Wang, X.-G.; Mao, W.-Y.; Wang, -S.-S. Changes in Volatile Compounds of Peanut Oil during the Roasting Process for Production of Aromatic Roasted Peanut Oil. J. Food Sci. 2011, 76, C404–412. DOI: 10.1111/j.1750-3841.2011.02073.x.
  • Durmaz, G.; GöKmen, V. Changes in Oxidative Stability, Antioxidant Capacity and Phytochemical Composition of Pistacia Terebinthus Oil with Roasting. Food Chem. 2011, 128, 410–414. DOI: 10.1016/j.foodchem.2011.03.044.
  • Qi, P.; Hong, H.; Liang, X.-Y.; Liu, D.-H. Assessment of Benzoic Acid Levels in Milk in China. Food Control. 2009, 20, 414–418. DOI: 10.1016/j.foodcont.2008.07.013.
  • Ding, M.-Z.; Peng, J.; Ma, S.-L.; Zhang, Y.-C. An Environment-Friendly Procedure for the High Performance Liquid Chromatography Determination of Benzoic Acid and Sorbic Acid in Soy Sauce. Food Chem. 2015, 183, 26–29. DOI: 10.1016/j.foodchem.2015.03.025.
  • Sieber, R.; Bütikofer, U.; Bosset, J. O. Benzoic Acid as a Natural Compound in Cultured Dairy Products and Cheese. Int. Dairy J. 1995, 1995(5), 227–246. DOI: 10.1016/0958-6946(94)00005-A.
  • Ministry of Health of the People’s Republic of China and Standardization Administration of the People’s Republic of China. Hygienic Hygienic Standard for Uses of Food Additives. China, GB 2760-2014, 2005.
  • Cheng, H.-Y.; Friis, A.; Leth, T. Partition of Selected Food Preservatives in Fish Oil–Water Systems. Food Chem. 2010, 122, 60–64. DOI: 10.1016/j.foodchem.2010.01.070.
  • Garcia, C. V.; Quek, S. Y.; Stevenson, R. J.; Winz, R. Characterisation of Bound Volatile Compounds of a Low Flavour Kiwifruit Species: Actinidia Eriantha. Food Chem. 2012, 134, 655–661. DOI: 10.1016/j.foodchem.2012.02.148.
  • AOCS. Official Methods and Recommended Practices of the American Oil Chemists’ Society, 4th ed.; AOCS press: Champaign, IL, 1997.
  • Ning, C.-L.; Jiang, Y.; Meng, J.-S.; Zhou, C.-H.; Tao, J. Herbaceous Peony Seed Oil: A Rich Source of Unsaturated Fatty Acids and γ‐tocopherol. Eur. J. Lipid Sci. Technol. 2014, 117, 532–542. DOI: 10.1002/ejlt.201400212.
  • Durmaz, G.; Karabulut, I.; Topçu, A.; Asiltürk, M.; Kutlu, T. Roasting-Related Changes in Oxidative Stability and Antioxidant Capacity of Apricot Kernel Oil. J. Am. Chem. Soc. 2010, 87, 401–409.
  • Gutfinger, T.;. Polyphenols in Olive Oils. J. Am. Chem. Soc. 1981, 58, 966–968.
  • Ministry of Health of the People’s Republic of China and Standardization Administration of the People’s Republic of China Determination of Benzoic Acid, Sorbic Acid and Saccharin Sodium in Foods. China, GB/T 5009.28-2016 (2016).
  • Ling, B.; Yang, X.-M.; Li, R.; Wang, S.-J. Physicochemical Properties, Volatile Compounds, and Oxidative Stability of Cold Pressed Kernel Oils from Raw and Roasted Pistachio (Pistacia Vera L. Var Kerman). Eur. J. Lipid Sci. Technol. 2016, 118, 1368–1379. DOI: 10.1002/ejlt.v118.9.
  • Ministry of Health of the People’s Republic of China and Standardization Administration of the People’s Republic of China. Hygienic Standard for Edible Vegetable Oil. China, GB 2716-2005 (2005).
  • Mabaleha, M. B.; Mitei, Y. C.; Yeboah, S. O. A Comparative Study of the Properties of Selected Melon Seed Oils as Potential Candidates for Development into Commercial Edible Vegetable Oils. J. Am. Chem. Soc. 2007, 84, 31–36.
  • Lee, Y. C.; Oh, S. W.; Chang, J.; Kim, I. H. Chemical Composition and Oxidative Stability of Safflower Oil Prepared from Safflower Seed Roasted with Different Temperatures. Food Chem. 2004, 84, 1–6. DOI: 10.1016/S0308-8146(03)00158-4.
  • Durmaz, G.; Alpaslan, M. Antioxidant Properties of Roasted Apricot (Prunus Armeniaca L.) Kernel. Food Chem. 2007, 100, 1177–1181. DOI: 10.1016/j.foodchem.2005.10.067.
  • Lasekan, O.;. Headspace Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) Determination of Volatile Compounds in Roasted Plantains (French Sombre and Dwarf Kalapua). LWT - Food Sci. Technol. 2012, 46, 536–541. DOI: 10.1016/j.lwt.2011.11.012.
  • Yang, J.-H.; Pan, Z.-L.; Takeoka, G.; Mackey, B.; Bingol, G.; Brandl, M. T.; Garcin, K.; McHugh, T. H.; Wang, H. Shelf-Life of Infrared Dry-Roasted Almonds. Food Chem. 2013, 138, 671–678. DOI: 10.1016/j.foodchem.2012.09.142.
  • Siegmund, B.; Murkovic, M. Changes in Chemical Composition of Pumpkin Seeds during the Roasting Process for Production of Pumpkin Seed Oil (Part 2: Volatile Compounds). Food Chem. 2004, 84, 367–374. DOI: 10.1016/S0308-8146(03)00241-3.
  • Shahidi, F.; Aishima, T.; Abou-Gharbia, H. A.; Youssef, M.; Shehata, A. Y. Effect of Processing on Flavor Precursor Amino Acids and Volatiles of Sesame Paste (Tehina). J. Am. Chem. Soc. 1997, 74, 667–678.
  • Frauendorfer, F.; Schieberle, P. Changes in Key Aroma Compounds of Criollo Cocoa Beans during Roasting. J. Agric. Food Chem. 2008, 56, 10244–10251. DOI: 10.1021/jf802098f.
  • Xiao, L.; Lee, J.; Zhang, G.; Ebeler, S. E.; Wickramasinghe, N.; Seiber, J.; Mitchell, A. E. HS-SPME GC/MS Characterization of Volatiles in Raw and Dry-Roasted Almonds (Prunus Dulcis). Food Chem. 2014, 151, 31–39. DOI: 10.1016/j.foodchem.2013.11.052.
  • Kiralan, M.; Kiralan, S. S. Changes in Volatile Compounds of Black Cumin Oil and Hazelnut Oil by Microwave Heating Process. J. Am. Chem. Soc. 2015, 92, 1445–1450.
  • Loch, C.; Reusch, H.; Ruge, I.; Godelmann, R.; Pflaum, T.; Kuballa, T.; Schumacher, S.; Lachenmeier, D. W. Benzaldehyde in Cherry Flavour as a Precursor of Benzene Formation in Beverages. Food Chem. 2016, 206, 74–77. DOI: 10.1016/j.foodchem.2016.03.034.