1,377
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Physicochemical properties of Arenga pinnata (Wurmb.) Merr starch: effect of high-speed jet treatment

, , & ORCID Icon
Pages 477-486 | Received 15 Oct 2018, Accepted 27 Feb 2019, Published online: 19 Mar 2019

References

  • Adawiyah, D. R.; Sasaki, T.; Kohyama, K. Characterization of Arenga Starch in Comparison with Sago Starch. Carbohydr. Polym. 2013, 92(2), 2306–2313. DOI: 10.1016/j.carbpol.2012.12.014.
  • Adawiyah, D. R.; Akuzawa, S.; Sasaki, T.; Kohyama, K. A Comparison of the Effects of Heat Moisture Treatment (HMT) on Rheological Properties and Amylopectin Structure in Sago (Metroxylon Sago) and Arenga (Arenga Pinnata) Starches. J. Food. Sci. Tech. Mys. 2017, 54(11), 3404–3410. DOI: 10.1007/s13197-017-2787-1.
  • Jumaidin, R.; Sapuan, S. M.; Jawaid, M.; Ishak, M. R.; Sahari, J. Effect of Agar on Flexural, Impact, and Thermogravimetric Properties of Thermoplastic Sugar Palm Starch. Curr. Org. Synth. 2017, 14(2), 200–205. DOI: 10.2174/1570179413666160921110732.
  • Sahari, J.; Sapuan, S. M.; Zainudin, E. S.; Maleque, M. A. Thermo-Mechanical Behaviors of Thermoplastic Starch Derived from Sugar Palm Tree (Arenga Pinnata). Carbohydr. Polym. 2013, 92(2), 1711–1716. DOI: 10.1016/j.carbpol.2012.11.031.
  • Sahari, J.; Sapuan, S. M.; Zainudin, E. S.; Maleque, M. A. Physico-Chemical and Thermal Properties of Starch Derived from Sugar Palm Tree (Arenga Pinnata). Asian J. Chem. 2014, 26(4), 955–959. DOI: 10.14233/ajchem.
  • Sanyang, M. L.; Sapuan, S. M.; Jawaid, M.; Ishak, M. R.; Sahari, J. Effect of Plasticizer Type and Concentration on Physical Properties of Biodegradable Films Based on Sugar Palm (Arenga Pinnata) Starch for Food Packaging. J Food Sci Tech MYS. 2016, 53(1), 326–336. DOI: 10.1007/s13197-015-2009-7.
  • Shen, Z.; Chen, Q.; Chen, D.; Zhang, X. Study on Physical and Chemical Characteristics of Arenga Pinnota Starch. Food Sci. 2004, 25(9), 46–49.
  • Ilyas, R. A.; Sapuan, S. M.; Ishak, M. R.; Zainudin, E. S. Development and Characterization of Sugar Palm Nanocrystalline Cellulose Reinforced Sugar Palm Starch Bionanocomposites. Carbohydr. Polym. 2018, 202, 186–202. DOI: 10.1016/j.carbpol.2018.09.002.
  • BeMiller, J. N. Preface to the Third Edition. In Starch, 3rd ed.; Academic Press: San Diego, 2009. pp. 18-19.
  • BeMiller, J. N.; Huber, K. C. Physical Modification of Food Starch Functionalities. In Annual Review of Food Science and Technology, Vol 6; Doyle, M. P., Klaenhammer, T. R., Eds.; Annual Reviews: Palo Alto, USA. 2015; 6, 19–69.
  • Fu, Z.; Chen, J.; Luo, S. J.; Liu, C. M.; Liu, W. Effect of Food Additives on Starch Retrogradation: A Review. Starch-Starke. 2015, 67(1–2), 69–78. DOI: 10.1002/star.201300278.
  • Fu, Z.; Luo, S. J.; BeMiller, J. N.; Liu, W.; Liu, C. M. Influence of High-Speed Jet on Solubility, Rheological Properties, Morphology and Crystalline Structure of Rice Starch. Starch-Starke. 2015, 67(7–8), 595–603. DOI: 10.1002/star.201400256.
  • Fu, Z.; Luo, S. J.; BeMiller, J. N.; Liu, W.; Liu, C. M. Effect of High-Speed Jet on Flow Behavior, Retrogradation, and Molecular Weight of Rice Starch. Carbohydr. Polym. 2015, 133, 61–66. DOI: 10.1016/j.carbpol.2015.07.006.
  • Fu, Z.; Luo, S.-J.; Liu, W.; Liu, C.-M.; Zhan, L.-J. Structural Changes Induced by High Speed Jet on in Vitro Digestibility and Hydroxypropylation of Rice Starch. Int. J. Food Sci. Technol. 2016, 51(4), 1034–1040. DOI: 10.1111/ijfs.13046.
  • Hu, Y.; Xia, W.; Li, J.; Liu, Y.; Wang, F.; Wei, X.; Lin, Y. Effect of High Speed Jet on Structure and Properties of Tapioca Starch. Sci. Technol. Food Ind. 2018, 39(2), 56–60.
  • Xia, W.; He, D.-N.; Fu, Y.-F.; Wei, X.-Y.; Liu, H.-C.; Ye, J.-P.; Liu, Y.-F.; Li, J.-H. Advanced Technology for Nanostarches Preparation by High Speed Jet and Its Mechanism Analysis. Carbohydr. Polym. 2017, 176, 127–134. DOI: 10.1016/j.carbpol.2017.08.072.
  • Xia, W.; Li, J.-H.; Wang, F.; Wei, X.-Y.; Lin, -Y.-Y. Iop, Preparation and Physicochemical Properties of Nanostarches Produced by High Speed Jet. In 2017 2nd International Seminar on Advances in Materials Science and Engineering; IOP Publishing LTD: Bristol, England. 2017; Vol. 231.
  • Xia, W.; Wang, F.; Li, J.; Wei, X.; Fu, T.; Cui, L.; Li, T.; Liu, Y. Effect of High Speed Jet on the Physical Properties of Tapioca Starch. Food Hydrocolloids. 2015, 49, 35–41. DOI: 10.1016/j.foodhyd.2015.03.010.
  • Zhang, Y.; Liu, W.; Liu, C.; Luo, S.; Li, T.; Liu, Y.; Wu, D.; Zuo, Y. Retrogradation Behaviour of High-Amylose Rice Starch Prepared by Improved Extrusion Cooking Technology. Food Chem. 2014, 158, 255–261. DOI: 10.1016/j.foodchem.2014.02.072.
  • Sevenou, O.; Hill, S. E.; Farhat, I. A.; Mitchell, J. R. Organisation of the External Region of the Starch Granule as Determined by Infrared Spectroscopy. Int. J. Biol. Macromol. 2002, 31(1), 79–85.
  • Jacobson, M. R.; Obanni, M.; Bemiller, J. N. Retrogradation of Starches from Different Botanical Sources. Cereal Chem. 1997, 74(5), 511–518. DOI: 10.1094/CCHEM.1997.74.5.511.
  • Miles, M. J.; Morris, V. J.; Orford, P. D.; Ring, S. G. The Roles of Amylose and Amylopectin in the Gelation and Retrogradation of Starch. Carbohydr. Res. 1985, 135(2), 271–281. DOI: 10.1016/S0008-6215(00)90778-X.
  • Bogracheva, T. Y.; Morris, V. J.; Ring, S. G.; Hedley, C. L. The Granular Structure of C-Type Pea Starch and Its Role in Gelatinization. Biopolymers. 1998, 45(4), 323–332. DOI: 10.1002/(ISSN)1097-0282.
  • Hoover, R.;. Composition, Molecular Structure, and Physicochemical Properties of Tuber and Root Starches: A Review. Carbohydr. Polym. 2001, 45(3), 253–267. DOI: 10.1016/S0144-8617(00)00260-5.
  • Liu, D.; Wu, Q.; Chen, H.; Chang, P. R. Transitional Properties of Starch Colloid with Particle Size Reduction from Micro- to Nanometer. J. Colloid Interface Sci. 2009, 339(1), 117–124. DOI: 10.1016/j.jcis.2009.07.035.
  • Li, W.; Bai, Y.; Mousaa, S. A. S.; Zhang, Q.; Shen, Q. Effect of High Hydrostatic Pressure on Physicochemical and Structural Properties of Rice Starch. Food Bioprocess. Technol. 2012, 5(6), 2233–2241. DOI: 10.1007/s11947-011-0542-6.
  • van Soest, J. J. G.; Tournois, H.; de Wit, D.; Vliegenthart, J. F. G. Short-Range Structure in (Partially) Crystalline Potato Starch Determined with Attenuated Total Reflectance Fourier-Transform IR Spectroscopy. Carbohydr. Res. 1995, 279, 201–214. DOI: 10.1016/0008-6215(95)00270-7.
  • Perera, C.; Hoover, R. Influence of Hydroxypropylation on Retrogradation Properties of Native, Defatted and Heat-Moisture Treated Potato Starches. Food Chem. 1999, 64(3), 361–375. DOI: 10.1016/S0308-8146(98)00130-7.
  • Miri, T.;. Viscosity and Oscillatory Rheology. In Practical Food Rheology; Norton, I. T., Spyropoulos, F., Cox, P., Eds.; John Wiley & Sons: Oxford, 2011; pp 7–26.
  • Kim, H.-S.; Patel, B.; BeMiller, J. N. Effects of the Amylose–Amylopectin Ratio on Starch–Hydrocolloid Interactions. Carbohydr. Polym. 2013, 98(2), 1438–1448. DOI: 10.1016/j.carbpol.2013.07.035.
  • Rao, M. A.; Mckenna, B. M. Phase Transitions, Food Texture and Structure. In Texture in Food; McKenna, B. M., Ed.; CRC Press: Cambridge England, 2003; Vol. 1, pp 36–62.
  • Singh, J.; Singh, N. Studies on the Morphological, Thermal and Rheological Properties of Starch Separated from Some Indian Potato Cultivars. Food Chem. 2001, 75(1), 67–77. DOI: 10.1016/S0308-8146(01)00189-3.
  • Conde-Petit, B.;. 4 - the Structure and Texture of Starch-Based Foods. In Texture in Food; McKenna, B. M., Ed.; Woodhead Publishing: Cambridge, England. 2003; pp 86–108.
  • Iida, Y.; Tuziuti, T.; Yasui, K.; Towata, A.; Kozuka, T. Control of Viscosity in Starch and Polysaccharide Solutions with Ultrasound after Gelatinization. Innovative Food Sci. Emerg. Technol. 2008, 9(2), 140–146. DOI: 10.1016/j.ifset.2007.03.029.