3,856
Views
23
CrossRef citations to date
0
Altmetric
Original Article

Morphological, structural, and physicochemical properties of starch isolated from different lily cultivars grown in China

, , , , &
Pages 737-757 | Received 11 Dec 2018, Accepted 29 Mar 2019, Published online: 19 Apr 2019

References

  • Du, Y. P.; He, H. B.; Wang, Z. X.; Wei, C.; Li, S.; Jia, G. X. Investigation and Evaluation of the Genus Lilium Resources Native to China. Genet. Resour. Crop Evol. 2014, 61, 395–412. DOI: 10.1007/s10722-013-0045-6.
  • Hong, X. X.; Luo, J. G.; Guo, C.; Kong, L. Y. New Steroidal Saponins from the Bulbs of Lilium Brownii Var. Viridulum. Carbohydr. Res. 2012, 361, 19–26. DOI: 10.1016/j.carres.2012.07.027.
  • Jin, L.; Zhang, Y.; Yan, L.; Guo, Y.; Niu, L. Phenolic Compounds and Antioxidant Activity of Bulb Extracts of Six Lilium Species Native to China. Molecules. 2012, 17, 9361–9378. DOI: 10.3390/molecules17089361.
  • Kwon, O. K.; Lee, M. Y.; Yuk, J. E.; Oh, S. R.; Chin, Y. W.; Lee, H. K.; Ahn, K. S. Anti-Inflammatory Effects of Methanol Extracts of the Root of Lilium Lancifolium on PLS-stimulated Raw264.7 Cells. J. Ethnopharmacol. 2010, 130, 28–34.
  • Gao, J.; Zhang, T.; Jin, Z. Y.; Xu, X. M.; Wang, J. H.; Zha, X. Q.; Chen, H. Q. Structural Characterisation, Physicochemical Properties and Antioxidant Activity of Polysaccharide from Lilium Lancifolium Thunb. Food Chem. 2015, 169, 430–438. DOI: 10.1016/j.foodchem.2014.08.016.
  • Pan, G. F.; Xie, Z. W.; Huang, S. X.; Tai, Y. L.; Cai, Q. S.; Jiang, W.; Sun, J.; Yuan, Y. Immune-Enhancing Effects of Polysaccharides Extracted from Lilium Lancifolium Thunb. Int. Immunopharmacol. 2017, 52, 119–126. DOI: 10.1016/j.intimp.2017.08.030.
  • Huang, H.; Ge, Z.; Limwachiranon, J.; Li, L.; Li, W.; Luo, Z. UV-C Treatment Affects Browning and Starch Metabolism of Minimally Processed Lily Bulb. Postharvest. Biol. Technol. 2017, 128, 105–111. DOI: 10.1016/j.postharvbio.2017.02.010.
  • Yu, X.; Zhang, J.; Li, A.; Wang, Z.; Xiong, F. Morphology and Physicochemical Properties of 3 Lilium Bulb Starches. J. Food Sci. 2015, 80, C1661–C1669. DOI: 10.1111/1750-3841.12969.
  • Yu, X.; Zhang, J.; Shao, S.; Yu, H.; Xiong, F.; Wang, Z. Morphological and Physicochemical Properties of Bulb and Bulbil Starches from Lilium Lancifolium. Starch- Stärke. 2015, 67, 448–458. DOI: 10.1002/star.201400209.
  • Li, X.; Gao, W.; Jiang, Q.; Xia, Y. Physicochemical, Morphological, and Thermal Properties of Starches Separated from Bulbs of Four Chinese Lily Cultivars. Starch-Stärke. 2012, 64, 545–551. DOI: 10.1002/star.v64.7.
  • Sandhu, K. S.; Siroha, A. K. Relationships between Physicochemical, Thermal, Rheological and in Vitro, Digestibility Properties of Starches from Pearl Millet Cultivars. LWT Food Sci. Technol. 2017, 83, 213–224. DOI: 10.1016/j.lwt.2017.05.015.
  • Li, X.; Wang, C.; Cheng, J.; Zhang, J.; Da, S. J.; Liu, X.; Xin, D.; Li, T.; Sun, H. Transcriptome Analysis of Carbohydrate Metabolism during Bulblet Formation and Development in Lilium Davidii Var. Unicolor. BMC Plant Biol. 2014, 14, 358–369. DOI: 10.1186/s12870-014-0358-4.
  • Yang, P.; Xu, L.; Xu, H.; Tang, Y.; He, G.; Cao, Y.; Feng, Y.; Yuan, S.; Ming, J. Histological and Transcriptomic Analysis during Bulbil Formation in Lilium Lancifolium. Front. Plant Sci. 2017, 8, 1508. DOI: 10.3389/fpls.2017.01508.
  • Zhang, Y.; Yong, Y. B.; Wang, Q.; Lu, Y. M. Physiological and Molecular Changes during Lily Underground Stem Axillary Bulbils Formation. Russ. J. Plant Physiol. 2018, 65, 372–383. DOI: 10.1134/S1021443718030172.
  • Boukhelkhal, M.; Moulai-Mostefa, N. Physicochemical Characterization of Starch Isolated from Soft Acorns of Holm Oak (Quercus Ilex Subsp. Ballota (Desf.) Samp.) Grown in Algeria. J. Food Meas. Charact. 2017, 11, 1–11. DOI: 10.1007/s11694-017-9582-6.
  • Hao, H.; Li, Q.; Bao, W.; Wu, Y.; Ouyang, J. Relationship between Physicochemical Characteristics and in Vitro, Digestibility of Chestnut (Castanea Mollissima) Starch. Food Hydrocolloids. 2018, 84, 193–199. DOI: 10.1016/j.foodhyd.2018.05.031.
  • Li, W.; Cao, F.; Fan, J.; Ouyang, S.; Luo, Q.; Zheng, J.; Zhang, G. Physically Modified Common Buckwheat Starch and Their Physicochemical and Structural Properties. Food Hydrocolloids. 2014, 40, 237–244. DOI: 10.1016/j.foodhyd.2014.03.012.
  • Li, W.; Shan, Y.; Xiao, X.; Luo, Q.; Zheng, J.; Ouyang, S.; Zhang, G. Physicochemical Properties of A- and B-Starch Granules Isolated from Hard Red and Soft Red Winter Wheat. J. Agric. Food Chem. 2013, 61, 6477–6484. DOI: 10.1021/jf400943h.
  • Abebe, W.; Collar, C.; Ronda, F. Impact of Variety Type and Particle Size Distribution on Starch Enzymatic Hydrolysis and Functional Properties of Tef Flours. Carbohydr. Polym. 2015, 115, 260–268. DOI: 10.1016/j.carbpol.2014.08.080.
  • Lin, P. C.; Wu, D. T.; Xie, J.; Zhao, J.; Li, S. P. Characterization and Comparison of Bioactive Polysaccharides from the Tubers of Gymnadenia Conopsea. Food Hydrocolloids. 2015, 43, 199–206. DOI: 10.1016/j.foodhyd.2014.05.015.
  • Chen, L.; Yu, C.; Ma, Y.; Xu, H.; Wang, S.; Wang, Y.; Liu, X.; Zhou, G. Insights into the Structural and Physicochemical Properties of Small Granular Starches from Two Hydrophyte Duckweeds, Spirodela Oligorrhiza and Lemna Minor. Carbohydr. Res. 2016, 435, 208–214. DOI: 10.1016/j.carres.2016.10.010.
  • Li, W.; Xiao, X.; Zhang, W.; Zheng, J.; Luo, Q.; Ouyang, S.; Zhang, G. Compositional, Morphological, Structural and Physicochemical Properties of Starches from Seven Naked Barley Cultivars Grown in China. Food Res. Int. 2014, 58, 7–14. DOI: 10.1016/j.foodres.2014.01.053.
  • Guo, Z.; Zeng, S.; Lu, X.; Zhou, M.; Zheng, M.; Zheng, B. Structural and Physicochemical Properties of Lotus Seed Starch Treated with Ultra-High Pressure. Food Chem. 2015, 186, 223–230. DOI: 10.1016/j.foodchem.2015.03.069.
  • Peng, X.; Yao, Y. Small-Granule Starches from Sweet Corn and Cow Cockle: Physical Properties and Amylopectin Branching Pattern. Food Hydrocolloids. 2017, 74, 349–357. DOI: 10.1016/j.foodhyd.2017.08.025.
  • Wu, S. S.; Wu, J. D.; Jiao, X. H.; Zhang, Q. X.; Lv, Y. M. The Dynamics of Changes in Starch and Lipid Droplets and Sub-Cellular Localization of β-amylase during the Growth of Lily Bulbs. J. Integr. Agric. 2012, 11, 585–592. DOI: 10.1016/S2095-3119(12)60045-8.
  • Zhu, B.; Ma, D.; Wang, J.; Zhang, S. Structure and Properties of Semi-Interpenetrating Network Hydrogel Based on Starch. Carbohydr. Polym. 2015, 133, 448–455. DOI: 10.1016/j.carbpol.2015.07.037.
  • Lin, L.; Guo, D.; Zhao, L.; Zhang, X.; Wang, J.; Zhang, F.; Wei, C. Comparative Structure of Starches from High-Amylose Maize Inbred Lines and Their Hybrids. Food Hydrocolloids. 2016, 52, 19–28. DOI: 10.1016/j.foodhyd.2015.06.008.
  • Zhu, D.; Zhang, H.; Guo, B.; Xu, K.; Dai, Q.; Wei, C.; Zhou, J.; Huo, Z. Physicochemical Properties of Indica-Japonica, Hybrid Rice Starch from Chinese Varieties. Food Hydrocolloids. 2017, 63, 356–363. DOI: 10.1016/j.foodhyd.2016.09.013.
  • Zhang, Y.; Zhu, K.; He, S.; Tan, L.; Kong, X. Characterizations of High Purity Starches Isolated from Five Different Jackfruit Cultivars. Food Hydrocolloids 2016, 52, 785–794.
  • Lin, L.; Cai, C.; Gilbert, R. G.; Li, E.; Wang, J.; Wei, C. Relationships between Amylopectin Molecular Structures and Functional Properties of Different-Sized Fractions of Normal and High-Amylose Maize Starches. Food Hydrocolloids. 2016, 52, 359–368. DOI: 10.1016/j.foodhyd.2015.07.019.
  • Li, J. H.; Guiltinan, M. J.; Thompson, D. B. The Use of Laser Differential Interference Contrast Microscopy for the Characterization of Starch Granule Ring Structure. Starch-Stärke. 2006, 58, 1–5. DOI: 10.1002/star.200500432.
  • Hera, E. D. L.; Gomez, M.; Rosell, C. M. Particle Size Distribution of Rice Flour Affecting the Starch Enzymatic Hydrolysis and Hydration Properties. Carbohydr. Polym. 2013, 98, 421–427. DOI: 10.1016/j.carbpol.2013.06.002.
  • Zeng, J.; Gao, H.; Li, G. Functional Properties of Wheat Starch with Different Particle Size Distribution. J. Sci. Food Agric. 2013, 94, 57–62. DOI: 10.1002/jsfa.6186.
  • Bechtel, D. B.; Wilson, J. D. Amyloplast Formation and Starch Granule Development in Hard Red Winter Wheat. Cereal Chem. 2003, 80, 175–183. DOI: 10.1094/CCHEM.2003.80.2.175.
  • Abiodun, O.;. Effect of Pre-Cooking and Particle Size Distribution on the Pasting and Functional Properties of Trifoliate (Dioscorea Dumetorum) Yam Flour. Br. J. Appl. Sci. Technol. 2013, 3, 847–859. DOI: 10.9734/BJAST/2013/3299.
  • Demiate, I. M.; Figueroa, A. M.; Santos, T. P. R. D.; Yangcheng, H.; Chang, F.; Jane, J. L. Physicochemical Characterization of Starches from Dry Beans Cultivated in Brazil. Food Hydrocolloids. 2016, 61, 812–820. DOI: 10.1016/j.foodhyd.2016.07.014.
  • Nwokocha, L. M.; Nwokocha, K. E.; Williams, P. A. Physicochemical Properties of Starch Isolated from Antiaris Africana Seeds in Comparison with Maize Starch. Starch-Stärke. 2012, 64, 246–254. DOI: 10.1002/star.v64.3.
  • Stepto, R. F. T.;. Dispersity in Polymer Science (IUPAC Recommendations 2009). Pure Appl. Chem. 2009, 81, 351–353. DOI: 10.1351/PAC-REC-08-05-02.
  • Hoyos-Leyva, J. D.; Bello-Pérez, L. A.; Alvarez-Ramirez, J.; Agama-Acevedo, E. Structural Characterization of Aroid Starches by Means of Chromatographic Techniques. Food Hydrocolloids. 2017, 69, 97–102. DOI: 10.1016/j.foodhyd.2017.01.034.
  • Rolland-Sabaté, A.; Sánchez, T.; Buléon, A.; Colonna, P.; Jaillais, B.; Ceballos, H.; Dufour, D. Structural Characterization of Novel Cassava Starches with Low and High-Amylose Contents in Comparison with Other Commercial Sources. Food Hydrocolloids. 2012, 27, 161–174. DOI: 10.1016/j.foodhyd.2011.07.008.
  • Zhang, Y.; Zhang, Y.; Fei, X.; Li, S.; Tan, L. Structural Characterization of Starches from Chinese Jackfruit Seeds (Artocarpus Heterophyllus Lam). Food Hydrocolloids. 2018, 80, 141–148. DOI: 10.1016/j.foodhyd.2018.02.015.
  • Hizukuri, S.;. Polymodal Distribution of the Chain Lengths of Amylopectins, and Its Significance. Carbohydr. Res. 1986, 147, 342–347. DOI: 10.1016/S0008-6215(00)90643-8.
  • Zhang, Y.; Zhang, Y.; Xu, F.; Wu, G.; Tan, L. Molecular Structure of Starch Isolated from Jackfruit and Its Relationship with Physicochemical Properties. Sci. Rep. 2017, 7, 13423. DOI: 10.1038/s41598-017-13435-8.
  • Zhang, L.; Zhao, L.; Bian, X.; Guo, K.; Zhou, L.; Wei, C. Characterization and Comparative Study of Starches from Seven Purple Sweet Potatoes. Food Hydrocolloids. 2018, 80, 168–176. DOI: 10.1016/j.foodhyd.2018.02.006.
  • Li, W.; Chang, S.; Zhang, P.; Shen, Q. Properties of Starch Separated from Ten Mung Bean Varieties and Seeds Processing Characteristics. Food Bioprocess. Technol. 2011, 4, 814–821. DOI: 10.1007/s11947-010-0421-6.
  • Yu, S.; Ma, Y.; Menager, L.; Sun, D. W. Physicochemical Properties of Starch and Flour from Different Rice Cultivars. Food Bioprocess. Technol. 2012, 5, 626–637. DOI: 10.1007/s11947-010-0330-8.
  • Zhang, H.; Yin, L.; Zheng, Y.; Shen, J. Rheological, Textural, and Enzymatic Hydrolysis Properties of Chickpea Starch from a Chinese Cultivar. Food Hydrocolloids. 2016, 54, 23–29. DOI: 10.1016/j.foodhyd.2015.09.018.
  • Sun, Q.; Han, Z.; Wang, L.; Xiong, L. Physicochemical Differences between Sorghum Starch and Sorghum Flour Modified by Heat-Moisture Treatment. Food Chem. 2014, 145, 756–764. DOI: 10.1016/j.foodchem.2013.08.129.
  • Kim, Y. Y.; Woo, K. S.; Chung, H. J. Starch Characteristics of Cowpea and Mung Bean Cultivars Grown in Korea. Food Chem. 2018, 263, 104–111. DOI: 10.1016/j.foodchem.2018.04.114.
  • Zhang, Y.; Hu, M.; Zhu, K.; Wu, G.; Tan, L. Functional Properties and Utilization of Artocarpus Heterophyllus Lam Seed Starch from New Species in China. Int. J. Biol. Macromol. 2018, 107, 1395–1405. DOI: 10.1016/j.ijbiomac.2017.10.001.
  • Hoyos-Leyva, J. D.; Bello-Pérez, L. A.; Yee-Madeira, H.; Rodriguez-Garcia, M. E.; Aguirre-Cruz, A. Characterization of the Flour and Starch of Aroid Cultivars Grown in Mexico. Starch-Stärke. 2017, 69, 1600370. DOI: 10.1002/star.201600370.
  • Lemos, A. M.; Abraão, A. S.; Cruz, B. R.; Morgado, M. L.; Rebelo, M.; Nunes, F. M. Effect of Granular Characteristics on the Viscoelastic and Mechanical Properties of Native Chestnut Starch (Castanea Sativa Mill). Food Hydrocolloids. 2015, 51, 305–317. DOI: 10.1016/j.foodhyd.2015.05.021.