4,018
Views
32
CrossRef citations to date
0
Altmetric
Original Article

A comparative study of the antimicrobial and antioxidant activities of Inonotus hispidus fruit and their mycelia extracts

ORCID Icon, , , , , , , , , , & ORCID Icon show all
Pages 768-783 | Received 02 Jan 2019, Accepted 12 Apr 2019, Published online: 25 Apr 2019

References

  • Pecoraro, L.; Angelini, P.; Arcangeli, A.; Bistocchi, G.; Gargano, M. L.; La Rosa, A.; Lunghini, D.; Polemis, E.; Rubini, A.; Saitta, S.; et al. Macrofungi in Mediterranean Maquis along Seashore and Altitudinal Transects. Plant Biosyst. 2014, 148(2), 367–376. DOI: 10.1080/11263504.2013.877535.
  • Vidović, S.; Zeković, Z.; Jokić, S. Clavaria Mushrooms and Extracts: Investigation on Valuable Components and Antioxidant Properties. International. J. Food Prop. 2014, 17, 2072–2081. DOI: 10.1080/10942912.2012.745129.
  • Angelini, P.; Tirillini, B.; Properzi, A.; Rol, C.; Venanzoni, R. Identification and Bioactivity of the Growth Inhibitors in Tuber Spp. Methanolic Extracts. Plant Biosyst. 2015, 149(6), 1000–1009. DOI: 10.1080/11263504.2014.983575.
  • Angelini, P.; Bistocchi, G.; Arcangeli, A.; Rubini, A.; Venanzoni, R. Inventory, Diversity and Communities of Macrofungi in the Collestrada Forest (Umbria, Central Italy). Plant Biosyst. 2016, 150(5), 1096–1105. DOI: 10.1080/11263504.2015.1108939.
  • Angelini, P.; Arcangeli, A.; Bistocchi, G.; Rubini, A.; Venanzoni, R.; Perini, C. Current Knowledge of Umbrian Macrofungi (Central Italy). Plant Biosyst. 2017, 151(5), 915–923. DOI: 10.1080/11263504.2016.1265609.
  • Wasser, S. P. Medicinal Mushrooms in Human Clinical Studies. Part I. Anticancer, Oncoimmunological, and Immunomodulatory Activities: A Review. Int. J. Med. Mushrooms. 2017, 19(4), 279–317. DOI: 10.1615/IntJMedMushrooms.v19.i4.10.
  • Angelini, P.; Tirillini, B.; Bistocchi, G.; Arcangeli, A.; Rubini, A.; Pellegino, R. M.; Fabiani, R.; Cruciani, G.; Venanzoni, R.; Rosignoli, P. Overview of the Biological Activities of a Methanol Extract from Wild Red Belt Conk, Fomitopsis Pinicola (Agaricomycetes), Fruiting Bodies from Central Italy. Int. J. Med. Mushrooms. 2018, 20(11), 1047–1063. DOI: 10.1615/IntJMedMushrooms.2018028595.
  • Koyani, R. D.; Pramod, S.; Bhatt, I. M.; Rao, K. S.; Rajput, K. S. The Delignification Pattern of Ailanthus Excelsa Wood by Inonotus Hispidus (Bull.: Fr.) P. Karst. J. Sustainable For. 2015, 34(5), 502–515. DOI: 10.1080/10549811.2015.1033554.
  • Fischer, M.; González García, V. An Annotated Checklist of European Basidiomycetes Related to White Rot of Grapevine (Vitis Vinifera). Phytopathol. Mediterr. 2015, 54(2), 281−298.
  • Bernicchia, A. Polyporaceae s.l., Fungi Europaei, 10. Candusso ed 2005. ISBN: 9788890105753
  • Yousfi, M.; Djeridane, A.; Bombarda, I.; Hamia, C.; Duhem, B.; Gaydou, E. M. Isolation and Characterization of a New Hispolone Derivative from Antioxidant Extracts of Pistacia Atlantica. Phytother. Res. 2009, 23(9), 1237–1242. DOI: 10.1002/ptr.2543.
  • Ali, N. A. A.; Mothana, R. A. A.; Lesnau, A.; Pilgrim, H.; Lindequist, U. Antiviral Activity of Inonotus Hispidus. Fitoterapia. 2003, 74, 483–485. DOI: 10.1016/S0367-326X(03)00119-9.
  • Ali, N. A. A.; Lüdtke, J.; Pilgrim, H.; Lindequist, U. Inhibition Of Chemiluminescence Response Of Human Mononuclear Cells And Suppression Of Mitogen-Induced Proliferation Of Spleen Lymphocytes Of Mice By Hispolon And Hispidin. Pharmazie. 1996, 51(9), 667–670.
  • Zan, L. F.; Qin, J. C.; Zhang, Y. M.; Yao, Y. H.; Bao, H. Y.; Li, X. Antioxidant Hispidin Derivatives from Medicinal Mushroom Inonotus Hispidus. Chem. Pharm. Bull. 2011, 59(6), 770–772.
  • Ren, Q.; Lu, X. Y.; Han, J. X.; Aisa, H. A.; Yuan, T. Triterpenoids and Phenolics from the Fruiting Bodies of Inonotus Hispidus and Their Activations of Melanogenesis and Tyrosinase. Chin. Chem. Lett. 2017, 28(5), 1052–1056. DOI: 10.1016/j.cclet.2016.12.010.
  • Hou, R.; Liu, X.; Xiang, K.; Chen, L.; Wu, X.; Lin, W.; Zheng, M.; Fu, J. Characterization of the Physicochemical Properties and Extraction Optimization of Natural Melanin from Inonotus Hispidus Mushroom. Food Chem. 2019, 277, 533–542. DOI: 10.1016/j.foodchem.2018.11.002.
  • Liu, X.; Hou, R.; Xu, K.; Chen, L.; Wu, X.; Lin, W.; Zheng, M.; Fu, J. Extraction, Characterization And Antioxidant Activity Analysis Of The Polysaccharide From The Solid-State Fermentation Substrate Of Inonotus Hispidus. Int. J. Biol. Macromol. 2019, 123, 468–476. DOI: 10.1016/j.ijbiomac.2018.11.069.
  • Smolskaite, L.; Talou, T.; Venskutonis, P. R. Comprehensive Evaluation of Antioxidant and Antimicrobial Properties of Different Mushroom Species. LWT - Food Sci. Technol. 2015, 60(1), 462–471. DOI: 10.1016/j.lwt.2014.08.007.
  • Lee, I. K.; Yun, B. S. Highly Oxygenated and Unsaturated Metabolites Providing a Diversity of Hispidin Class Antioxidants in the Medicinal Mushrooms Inonotus and Phellinus. Bioorg. Med. Chem. 2007, 15(10), 3309–3314. DOI: 10.1016/j.bmc.2007.03.039.
  • GrüNdemann, C.; Arnhold, M.; Meier, S.; Bäcker, C.; Garcia-Käufer, M.; Grunewald, F.; Steinborn, C.; Klemd, A. M.; Wille, R.; Huber, R.; et al. Effects of Inonotus Hispidus Extracts and Compounds on Human Immunocompetent Cells. Planta Med. 2016, 82(15), 1359–1367. DOI: 10.1055/s-0042-111693.
  • Gonindard, C.; Bergonzi, C.; Denier, C.; Sergheraert, C.; Klaebe, A.; Chavant, L. Synthetic Hispidin, a PKC Inhibitor, Is More Cytotoxic toward Cancer Cells than Normal Cells in Vitro. Cell Biol. Toxicol. 1977, 13(3), 141–153. DOI: 10.1023/A:1007321227010.
  • Benarous, K.; Bombarda, I.; Iriepa, I.; Moraleda, I.; Gaetan, H.; Linani, A.; Tahria, D.; Sebaa, M.; Yousfi, M. Harmaline and Hispidin from Peganum Harmala and Inonotus Hispidus with Binding Affinity to Candida Rugosa Lipase: In Silico and in Vitro Studies. Bioorg. Chem. 2015, 62, 1–7. DOI: 10.1016/j.bioorg.2015.06.005.
  • Tura, D.; Zmitrovich, I. V.; Wasser, S. P.; Nevo, E. Medicinal Species From Genera Inonotus And Phellinus (Aphyllophoromycetideae): Cultural-Morphological Peculiarities, Growth Characteristics, And Qualitative Enzymatic Activity Tests. Int. J. Med. Mushrooms. 2009, 11(3), 309–328. DOI: 10.1615/IntJMedMushr.v11.i3.
  • Elisashvili, V. Submerged Cultivation of Medicinal Mushrooms: Bioprocesses and Products (Review). Int. J. Med. Mushrooms. 2012, 14(3), 211–239. DOI: 10.1615/IntJMedMushr.v14.i3.
  • Gams, W.; Hoekstra, E. S.; Aptroot, A. eds. CBS Course of Mycology, 4th ed.; Centraalbureau voor Schimmelcultures Publisher, Baarn, Netherlands, 1998. 165.
  • Ryvarden, L.; Melo, I. Poroid Fungi of Europe. Synop. Fungorum. 2014, 31, 1–455.
  • Nilsson, R. H.; Kristiansson, E.; Ryberg, M.; Hallenberg, N.; Larsson, K. H. Intraspecific ITS Variability in the Kingdom Fungi as Expressed in the International Sequence Databases and ITS Implications for Molecular Species Identification. Evol. Bioinf. 2008, 4, 193–201. DOI: 10.4137/EBO.S653.
  • Schoch, C. L.; Seifert, K. A.; Huhndorf, S.; Robert, V.; Spouge, J. L.; Levesque, C. A.; Chen, W. Nuclear Ribosomal Internal Transcribed Spacer (ITS) Region as a Universal DNA Barcode Marker for Fungi. Proc. National Academy Sci. 2012, 109(16), 6241–6246. DOI: 10.1073/pnas.1117018109.
  • Thompson, J. D.; Higgins, D. G.; Gibson, T. J. CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice. Nucleic Acids Res. 1994, 22(22), 4673–4680.
  • Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 For Bigger Datasets. Mol. Biol. Evol. 2016, 33(7), 1870–1874. DOI: 10.1093/molbev/msw054.
  • Singleton, V. L.; Rossi, J. A. J. Colorimetry Of Total Phenolics With Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–153.
  • Lamaison, J. L.; Carnat, A. Content of Main Flavonoids in Flowers and Leaves of Crataegus Monogyna Jacq. And Crataegus Laevigata (Poiret) DC. In Relation with Development Stages. Pharm. Acta Helv. 1991, 65, 315–320.
  • Peterson, D. M.; Hahn, M. J.; Emmons, C. L. Oat Avenanthramides Exhibit Antioxidant Activities in Vitro. Food Chem. 2002, 79(4), 473–478. DOI: 10.1016/S0308-8146(02)00219-4.
  • Caprioli, G.; Alunno, A.; Beghelli, D.; Bianco, A.; Bramucci, M.; Frezza, C.; Iannarelli, R.; Papa, F.; Quassinti, L.; Sagratini, G.; et al. Polar Constituents And Biological Activity Of The Berry-Like Fruits From Hypericum Androsaemum L. Front. Plant Sci. 2016, 7, 232. DOI: 10.3389/fpls.2016.00232.
  • CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard, 9th Ed., CLSI Document M07-A9, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087; Clinical and Laboratory Standards Institute: USA, 2012.
  • CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard-Third Edition. CLSI Document M27-A3; Clinical and Laboratory Standards Institute: Wayne, PA, 2008.
  • CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard-Second Edition. CLSI Document M38-A2; Clinical and Laboratory Standards Institute: Wayne, PA, 2008.
  • CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; 4th Informational Supplement. CLSI Document M27-S4; Clinical and Laboratory Standards Institute: Wayne, PA, 2012.
  • CLSI. Performance Standards for Antifungal Susceptibility Testing of Filamentous Fungi. 1st. Ed. CLSI Supplement M61; Clinical and Laboratory Standards Institute: Wayne, PA, 2017.
  • Sabaeifard, P.; Abdi-Ali, A.; Soudi, M. R.; Dinarvand, R. Optimization of Tetrazolium Salt Assay for Pseudomonas Aeruginosa Biofilm Using Microtiter Plate Method. J. Microbiol. Methods. 2014, 105, 134–140. DOI: 10.1016/j.mimet.2014.07.024.
  • Pagiotti, R.; Angelini, P.; Rubini, A.; Tirillini, B.; Granetti, B.; Venanzoni, R. Identification and Characterisation of Human Pathogenic Filamentous Fungi and Susceptibility to Thymus Schimperi Essential Oil. Mycoses. 2011, 54, e364–376. DOI: 10.1111/j.1439-0507.2010.01926.x.
  • Zhou, L. W.; Vlasák, J.; Decock, C.; Assefa, A.; Stenlid, J.; Abate, D.; Wu, S. H.; Dai, Y. C. Global Diversity and Taxonomy of the Inonotus Linteus Complex (Hymenochaetales, Basidiomycota): Sanghuangporus Gen. Nov., Tropicoporus Excentrodendri and T. Guanacastensis Gen. Et Spp. Nov., And 17 New Combinations. Fungal Diversity. 2016, 77(1), 335–347. DOI: 10.1007/s13225-015-0335-8.
  • Papaioannou, M.; Schleich, S.; Roell, D.; Schubert, U.; Tanner, T.; Claessens, F.; Matusch, R.; Baniahmad, A. NBBS Isolated from Pygeum Africanum Bark Exhibits Androgen Antagonistic Activity, Inhibits AR Nuclear Translocation and Prostate Cancer Cell Growth. Invest. New Drugs. 2010, 28(6), 729–743. DOI: 10.1007/s10637-009-9304-y.
  • Roell, D.; Baniahmad, A. The Natural Compounds Atraric Acid And N-Butylbenzene-Sulfonamide As Antagonists Of The Human Androgen Receptor And Inhibitors Of Prostate Cancer Cell Growth. Mol. Cell. Endocrinol. 2011, 332(1–2), 1–8. DOI: 10.1016/j.mce.2010.09.013.
  • Rider, C. V.; Janardhan, K. S.; Rao, D.; Morrison, J. P.; McPherson, C. A.; Harry, G. J. Evaluation Of N-Butylbenzenesulfonamide (Nbbs) Neurotoxicity In Sprague-Dawley Male Rats Following 27-Day Oral Exposure. NeuroToxicology. 2012, 33(6), 1528–1535. DOI: 10.1016/j.neuro.2012.07.002.
  • Kim, K. K.; Kang, J. G.; Moon, S. S.; Kang, K. Y. Isolation And Identification Of Antifungal N-Butylbenzenesulphonamide Produced By Pseudomonas Sp. Ab2. J. Antibiot. (Tokyo). 2000, 53(2), 131–136. DOI: 10.7164/antibiotics.53.131.
  • Lindstedt, M.; Allenmark, S.; Thompson, R. A.; Edebo, L. Antimicrobial Activity of Betaine Esters, Quaternary Ammonium Amphiphiles Which Spontaneously Hydrolyze into Nontoxic Components. Antimicrob. Agents Chemother. 1990, 34(10), 1949–1954.
  • Fries, E.; PüTtmann, W. Monitoring of the Antioxidant BHT and Its Metabolite BHT-CHO in German River Water and Ground Water. Sci. Total Environ. 2004, 319(1–3), 269–282. DOI: 10.1016/S0048-9697(03)00447-9.
  • Hernández, F.; Portolés, T.; Pitarch, E.; López, F. J. Searching For Anthropogenic Contaminants In Human Breast Adipose Tissues Using Gas Chromatography-Time-of-Flight Mass Spectrometry. J. Mass Spectrom. 2009, 44(1), 1–11. DOI: 10.1002/jms.1538.
  • Ma, B. J.; Peng, H.; Liu, J. K. Monitoring Of BHT-Quinone And Bht-Cho In The Gas Of Capsules Of Asclepias Physocarpa. J. Biosci. 2006, 61(5–6), 458–460.
  • Mullican, M. D.; Wilson, M. W.; Conner, D. T.; Kostlan, C. K.; Schrier, D. J.; Dyer, R. D. Design of 5-(3,5-Di-Tert-Butyl-4-Hydroxyphenyl)-1,3,4-Thiadiazoles, −1,3,4-Oxadiazoles, and −1,2,4-Triazoles as Orally Active, Nonulcerogenic Antiinflammatory Agents. J. Med. Chem. 1993, 36(8), 1090–1099.
  • Fujisawa, S.; Kadoma, Y.; Yokoe, I. Radical-Scavenging Activity Of Butylated Hydroxytoluene (Bht) And Its Metabolites. Chem. Phys. Lipids. 2004, 130(2), 189–195. DOI: 10.1016/j.chemphyslip.2004.03.005.
  • Culvenor, C. C. J.; Edgar, J. A.; Frahn, J. L.; Smith, L. W. The Alkaloids of Symphytum Uplandicum Russian Comfrey. Aust. J. Chem. 1980, 33(5), 1105–1114. DOI: 10.1071/CH9801105.
  • El-Shazly, A.; Abdel-All, M.; Tei, A.; Wink, M. Pyrrolizidine Alkaloids from Echium Rauwolfii and Echium Horridum (Boraginaceae). J. Biosci. 1999, 54(5–6), 295–300.
  • El-Shazly, A.; Abdel-Ghani, A.; Wink, M. Pyrrolizidine Alkaloids from Onosma Arenaria (Boraginaceae). Biochem. Syst. Ecol. 2003, 31(5), 477–485. DOI: 10.1016/S0305-1978(02)00177-1.
  • Navneet, S. S. G.; Kumar, S. Appraisal of Antimicrobial Properties of Onosma Bracteatum Wall. Fruit Extracts against Respiratory Tract Pathogens. J. Med. Herbs Ethnomed. 2015, 1, 108–112.
  • Doskocil, I.; Havlik, J.; Verlotta, R.; Tauchen, J.; Vesela, L.; Macakova, K.; Opletal, L.; Kokoska, L.; Rada, V. In Vitro Immunomodulatory Activity, Cytotoxicity and Chemistry of Some Central European Polypores. Pharm. Biol. 2016, 54(11), 2369–2376. DOI: 10.3109/13880209.2016.1156708.
  • Choi, Y.; Lee, S. M.; Chun, J.; Lee, H. B.; Lee, J. Influence of Heat Treatment on the Antioxidant Activities and Polyphenolic Compounds of Shiitake (Lentinus Edodes) Mushroom. Food Chem. 2006, 99(2), 381–387. DOI: 10.1016/j.foodchem.2005.08.004.
  • Jeong, S. C.; Koyyalamudi, S. R.; Hughes, J. M.; Khoo, C.; Bailey, T.; Marripudi, K.; Park, J. P.; Kim, J. H.; Song, C. H. Antioxidant And Immunomodulating Activities Of Exo-And Endopolysaccharide Fractions From Submerged Mycelia Cultures Of Culinary-Medicinal Mushrooms. Int. J. Med. Mushrooms. 2013, 15(3), 251–266.
  • Gil-Ramírez, A.; Pavo-Caballero, C.; Baeza, E.; Baenas, N.; Garcia-Viguera, C.; Marín, F. R.; Soler-Rivas, C. Mushrooms Do Not Contain Flavonoids. J. Funct. Foods. 2016, 25, 1–13. DOI: 10.1016/j.jff.2016.05.005.
  • Sanchez, C. Reactive Oxygen Species and Antioxidant Properties from Mushrooms. Synth. Syst. Biotechnol. 2017, 2(1), 13–22. DOI: 10.1016/j.synbio.2016.12.001.
  • López-Vázqueza, E.; Prieto-García, F.; Gayosso-Canales, M.; Otazo Sáncheza, E. M.; Villagómez Ibarra, J. R. Phenolic Acids, Flavonoids, Ascorbic Acid, β-glucans And Antioxidant Activity In Mexican Wild Edible Mushrooms. Ital J. Food Saf. 2017, 29(4), 766–774.
  • Adegoke, G. O.; Vijay Kumar, M.; Gopala Krishna, A. G.; Varadaraj, M. C.; Sambaiah, K.; Lokesh, B. R. Antioxidants and Lipid Oxidation in Foods - A Critical Appraisal. J. Food Sci. Technol. 1998, 35(4), 283–298.
  • WHO. World Health Organization – Antibiotic resistance. http://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance. ( Accessed Nov 16, 2018).
  • Lindequist, U.; Niedermeyer, T. H. J.; Jülich, W. D. The Pharmacological Potential of Mushrooms. Evid. Based Complement. Altern. Med. 2005, 2(3), 285–299. DOI: 10.1093/ecam/neh107.
  • Yamaç, M.; Bilgili, F. Antimicrobial Activities of Fruit Bodies And/Or Mycelial Cultures of Some Mushroom Isolates. Pharm. Biol. 2006, 44(9), 660–667. DOI: 10.1080/13880200601006897.
  • de Mattos-Shipley, K. M. J.; Ford, K. L.; Alberti, F.; Banks, A. M.; Bailey, A. M.; Foster, G. D.; Good, T. The Bad and the Tasty: The Many Roles of Mushrooms. Stud. Mycol. 2016, 85, 125–157. DOI: 10.1016/j.simyco.2016.11.002.
  • Sułkowska-Ziaja, K.; Szewczyk, A.; Galanty, A.; Gdula-Argasińska, J.; Muszyńska, B. Chemical Composition and Biological Activity of Extracts from Fruiting Bodies and Mycelial Cultures of Fomitopsis Betulina. Mol. Biol. Rep. 2018, 45(6), 2535–2544. DOI: 10.1007/s11033-018-4420-4.
  • Alves, M. J.; Ferreira, I. C.; Dias, J.; Teixeira, V.; Martins, A.; Pintado, M. A Review on Antimicrobial Activity of Mushroom (Basidiomycetes) Extracts and Isolated Compounds. Planta Med. 2012, 78(16), 1707–1718. DOI: 10.1055/s-0032-1315370.
  • Espinel-Ingroff, A.; Barlett, M.; Chaturvedi, V.; Ghannoum, M.; Hazen, K. C.; Pfaller, M. A.; Rinaldi, M.; Walsh, T. J. Optimal Susceptibility Testing Conditions for Detection of Azole Resistance in Aspergillus Spp.: NCCLS Collaborative Evaluation. National Committee for Clinical Laboratory Standards. Antimicrob. Agents Chemother. 2001, 45(6), 1828–1835. DOI: 10.1128/AAC.45.6.1828-1835.2001.