2,370
Views
21
CrossRef citations to date
0
Altmetric
Original Article

Structural and functional modifications of kudzu starch modified by branching enzyme

, , &
Pages 952-966 | Received 21 Jan 2019, Accepted 10 May 2019, Published online: 24 May 2019

References

  • Hirakura, K.; Morita, M.; Nakajima, K.; Sugama, K.; Takagi, K.; Nitsu, K.; Ikeya, Y.; Maruno, M.; Okada, M. Phenolic Glucosides from the Root of Pueraria Lobata. Phytochemistry. 1997, 46, 921–928. DOI: 10.1016/S0031-9422(97)00371-3.
  • Keung, W. M.; Vallee, B. L. Kudzu Root: Anancient Chinese Source of Modern Antidipsotropic Agents. Phytochemistry. 1998, 47, 499–506.
  • Shurtleff, W.; Aoyagi, A. The Ancient Genie. In The Book of Kudzu: Aculinary and Healing Guide; Shurtleff, W., Aoyagi, A., Eds.; Autumn press: Massachusetts, 1977; pp 8–18.
  • Sibao, C.; Dajian, Y.; Shilin, C.; Hongxi, X.; Chan, A. S. Seasonal Variations in the Isoflavonoids of Radix Puerariae. Phytochem. Anal. 2007, 18(3), 245–250. DOI: 10.1002/pca.978.
  • Soni, P. L.; Agarwal, A. The Starch of Pueraria Tuberose Comparison with Maize Starch. Starch. 1983, 35, 4–7. DOI: 10.1002/star.19830350103.
  • Van Hung, P.; Morita, N. Chemical Compositions, fine Structure and Physicochemical Properties of Kudzu (Puerarialobata) Starches from Different Regions. Food Chem. 2007, 105(2), 749–755. DOI: 10.1016/j.foodchem.2007.01.023.
  • Geng, Z.; Zongdao, C.; Yimin, W. Physicochemical Properties of Lotus (Nelumbo Nucifera Gaertn.) And Kudzu (Pueraria Hirsute Matsum.) Starches. Int. J. Food Sci. Tech. 2007, 42, 1449–1455. DOI: 10.1111/j.1365-2621.2006.01363.x.
  • Aberle, T.; Burchard, W.; Vorwerg, W.; Radosta, S. Conformational Contributions of Amylose and Amylopectin to the Structural Properties of Starches from Various Sources. Starch. 1994, 46(9), 329–335. DOI: 10.1002/star.19940460903.
  • Suzuki, A.; Hizukuri, S.; Takeda, Y. Physicochemical Studies of Kudzu Starch. Cereal Chem. 1981, 58, 286–290.
  • Hizukuri, S.;. Relationship between the Distribution of the Chain Length of Amylopectin and the Crystalline Structure of Starch Granules. Carbohyd. Res. 1985, 141, 295–306. DOI: 10.1016/S0008-6215(00)90461-0.
  • Zhu, F.;. Relationships between Amylopectin Internal Molecular Structure and Physicochemical Properties of Starch. Trends Food Sci.Tech. 2018, 78, 234–242. DOI: 10.1016/j.tifs.2018.05.024.
  • Chung, H. J.; Liu, Q.; Donner, E.; Hoover, R.; Warkentin, T. D.; Vandenberg, B. Composition, Molecular Structure, Properties, and in Vitro Digestibility of Starches from Newly Released Canadian Pulse Cultivars. Cereal Chem. 2008, 85, 471–479. DOI: 10.1094/CCHEM-85-4-0471.
  • Wani, I. A.; Sogi, D. S.; Hamdani, A. M.; Gani, A.; Bhat, N. A.; Shah, A. Isolation, Composition, and Physicochemical Properties of Starch from Legumes: A Review. Starch. 2016, 68, 834–845. DOI: 10.1002/star.201600007.
  • Srichuwong, S.; Jane, J. L. Physicochemical Properties of Starch Affected by Molecular Composition and Structures: A Review. Food Sci. Biotechnol. 2007, 16, 663–674.
  • Kong, X. L.; Bertoft, E.; Bao, J. S.; Corke, H. Molecular Structure of Amylopectin from Amaranth Starch and Its Effect on Physicochemical Properties. Int. J. Biol. Macromol. 2008, 43, 377–382. DOI: 10.1016/j.ijbiomac.2008.07.018.
  • Lee, C. K.; Le, Q. T.; Kim, Y. H.; Shim, J. H.; Lee, S. J.; Park, J. H.; Lee, K. P.; Song, S. H.; Auh, J. H.; Lee, S. J.; et al. Enzymatic Synthesis and Properties of Highly Branched Rice Starch Amylose and Amylopectin Cluster. J. Agr. Food Chem. 2008, 56, 126–131. DOI: 10.1021/jf072508s.
  • Ren, J. Y.; Li, Y.; Li, C. M.; Gu, Z. B.; Cheng, L.; Hong, Y.; Li, Z. F. Pasting and Thermal Properties of Waxy Corn Starch Modified by 1, 4-α-glucan Branching Enzyme. Int. J. Biol. Macromol. 2017, 97, 679–687. DOI: 10.1016/j.ijbiomac.2017.01.087.
  • Singh, H.; Lin, J.-H.; Huang, W.-H.; Chang, Y.-H. Influence of Amylopectin Structure on Rheological and Retrogradation Properties of Waxy Rice Starches. J. Cereal Sci.. 2012, 56, 367–373. DOI: 10.1016/j.jcs.2012.04.007.
  • Van der Maarel, M. J. E. C.; Leemhuis, H. Starch Modification with Microbial Alpha-Glucanotransferase Enzymes. Carbohyd. Polym.. 2013, 93, 116–121. DOI: 10.1016/j.carbpol.2012.01.065.
  • Kim, J. W.; Kim, Y. H.; Lee, H. S.; Yang, S. J.; Kim, Y. W.; Lee, M. H.; Kim, J. W.; Seo, N. S.; Park, C. S.; Park, K. H. Molecular Cloning and Biochemical Characterization of the First Archaeal Maltogenic Amylase from the Hyperthermophilic Archaeon Thermoplasma Volcanium GSS1. Biochim. Biophys. Acta Proteins Proteom. 2007, 661–669. doi:10.1016/j.bbapap.2007.03.010.
  • Park, K. H.; Kim, T. J.; Cheong, T. K.; Kim, J. W.; Oh, B. H.; Svensson, B. Structure, Specificity and Function of Cyclomaltodextrinase, a Multispecific Enzyme of the α-amylase Family. BBA. 2000, 1478, 165–185.
  • Biselli, C.; Cavalluzzo, D.; Perrini, R.; Gianinetti, A.; Bagnaresi, P.; Urso, S.; Orasen, G.; Desiderio, F.; Lupotto, E.; Cattivelli, L.; et al. Improvement of Marker-Based Predictability of Apparent Amylose Content in Japonica Rice through GBSSI Allele Mining. Rice. 2014, 7, 1–18. DOI: 10.1186/1939-8433-7-1.
  • Jo, A. R.; Kim, H. R.; Choi, S. J.; Lee, J. S.; Chung, N. M.; Han, S. K.; Park, C.-S.; Moon, T. W. Preparation of Slowly Digestible Sweet Potato Daeyumi Starch by Dual Enzyme Modification. Carbohyd. Polym. 2016, 143, 164–171. DOI: 10.1016/j.carbpol.2016.02.021.
  • Guo, L.; Li, H.; Cui, B. Enzymatic Hydrolysis of Amylopectins from Lotus Rhizome and Kudzu Starches. J. Food Nutr. Res. 2018, 57, 396–407.
  • Guo, L.;. In Vitro Amylase Hydrolysis of Amylopectins from Cereal Starches Based on Molecular Sturcture of Amylopectins. Food Hydrocolloid. 2018, 77, 238–247. DOI: 10.1016/j.foodhyd.2017.09.039.
  • Lee, B. H.; Yan, L.; Phillips, R. J.; Reuhs, B. L.; Jones, K.; Rose, D. R.; Nichols, B. L.; Quezada-Calvillo, R.; Yoo, S. H.; Hamaker, B. R. Enzyme-Synthesized Highly Branched Maltodextrins Have Slow Glucose Generation at the Mucosal Alpha-Glucosidase Level and are Slowly Digestible in Vivo. Plos One. 2013, 8(4), 1–10.
  • Leach, H. W.; McCowen, L. D.; Schoch, T. Structure of the Starch Granule. II. Swelling Power and Solubility Patterns of Various Starches. J. Cereal Chem. 1959, 36, 534–544.
  • Guo, L.; Cui, B. The Relationship between Entanglement Concentration and Physicochemical Properties of Potato and Sweet Potato Starch Dispersions. Int. J. Food Sci. Tech. 2018, 53, 337–346. DOI: 10.1111/ijfs.13590.
  • Guo, L.; Hu, J.; Zhang, J. J.; Du, X. F. The Role of Entanglement Concentration on the Hydrodynamic Properties of Potato and Sweet Potato Starches. Int. J. Biol. Macromol. 2016, 93, 1–8. DOI: 10.1016/j.ijbiomac.2016.08.075.
  • Hanashiro, I.; Tagawa, M.; Shibahara, S.; Iwata, K.; Takeda, Y. Examination of Molar-Based Distribution of A, B and C Chains of Amylopectin by Fluorescent Labeling with 2-Aminopyridine. Carbohyd. Res. 2002, 337, 1211–1215. DOI: 10.1016/S0008-6215(02)00110-6.
  • Hernández, J. M.; Gaborieau, M.; Castignolles, P.; Gidley, M. J.; Myers, A. M.; Gilbert, R. G. Mechanistic Investigation of a Starch-Branching Enzyme Using Hydrodynamic Volume SEC Analysis. Biomacromolecules. 2008, 9, 954–965. DOI: 10.1021/bm701213p.
  • Planchot, V.; Gérard, C.; Bertoft, E.; Colonna, P. An approach to structure analysis of granules using genetically modified starches. In Starch: Advances in Structure and Function; Barsby, T. L., Donald, A. M., Frazier, P. J., Eds.; Royal Society of Chemistry: Cambridge, UK, 2001; p 103–106.
  • Jensen, S. L.; Zhu, F.; Vamadevan, V.; Bertoft, E.; Seetharaman, K.; Bandsholmb, O.; Blennow, A. Stabilization of Semi-Solid-State Starch by Branching Enzyme-Assisted Chain-Transfer Catalysis at Extreme Substrate Concentration. Carbohyd. Polym. 2013, 98, 1490–1496. DOI: 10.1016/j.carbpol.2013.07.071.
  • Kittisuban, P.; Lee, B.-H.; Suphantharika, M.; Hamaker, B. R. Slow Glucose Release Property of Enzyme-Synthesized Highly Branched Maltodextrins Differs among Starch Sources. Carbohyd. Polym. 2014, 107, 182–191. DOI: 10.1016/j.carbpol.2014.02.033.
  • Le, Q.-T.; Lee, C.-K.; Kim, Y.-W.; Lee, S.-J.; Zhang, R.; Withers, S. G.; Kim, Y.-R.; Auh, J.-H.; Park, K.-H. Amylolytically-Resistant Tapioca Starch Modified by Combined Treatment of Branching Enzyme and Maltogenic Amylase. Carbohyd. Polym. 2009, 75, 9–14. DOI: 10.1016/j.carbpol.2008.06.001.
  • Tester, R. F.; Morrison, W. R. Swelling and Gelatinization of Cereal Starches. I. Effects of Amylopectin, Amylose, and Lipids. Cereal Chem. 1990, 67, 551–557.
  • Lopez-Rubio, A.; Flanagan, B. M.; Gilbert, E. P.; Gidley, M. J. A Novel Approach for Calculating Starch Crystallinity and Its Correlation with Double Helix Content: A Combined XRD and NMR Study. Biopolymers. 2008, 89, 761–768. DOI: 10.1002/bip.21005.
  • Cooke, D.; Gidley, M. J. Loss of Crystalline and Molecular Order during Starch Gelatinisation: Origin of the Enthalpic Transition. Carbohyd. Res. 1992, 227, 103–112. DOI: 10.1016/0008-6215(92)85063-6.
  • Ai, Y.; Jane, J. L. Gelatinization and Rheological Properties of Starch. Starch. 2015, 67, 213–224. DOI: 10.1002/star.201400201.
  • Li, W. W.; Li, C. M.; Gu, Z. B.; Qiu, Y. J.; Cheng, L.; Hong, Y.; Li, Z. F. Relationship between Structure and Retrogradation Properties of Corn Starch Treated with 1, 4-α-glucan Branching Enzyme. Food Hydrocolloid. 2016, 52, 868–875. DOI: 10.1016/j.foodhyd.2015.09.009.
  • Tsai, M. L.; Li, C. F.; Lii, C. Y. Effects of Granular Structures on the Pasting Behaviors of Starches. Cereal Chem. 1997, 74, 750–757. DOI: 10.1094/CCHEM.1997.74.6.750.
  • Donth, E.; Beiner, M.; Reissig, S.; Korus, J.; Garwe, F.; Vieweg, S. Fine Structure of the Main Transition in Amorphous Polymers: Entanglement Spacing and Characteristic Length of the Glass Transition: Discussion of Examples. Macromolecules. 1996, 29, 6589–6600. DOI: 10.1021/ma951881a.
  • Liu, P. F.; Kang, X. M.; Cui, B.; Wang, R.; Wu, Z. Z. Effects of Glycerides with Different Molecular Structures on the Properties of Maize Starch and Its Film Forming Capacity. Ind. Crop. Prod. 2019, 129, 512–517. DOI: 10.1016/j.indcrop.2018.12.039.
  • Yuan, C.; Sang, L. Y.; Wang, Y. L.; Cui, B. Influence of Cyclodextrins on the Gel Properties of Kappa-Carrageenan. Food Chem. 2018, 266, 545–550. DOI: 10.1016/j.foodchem.2018.06.060.
  • Tung, M. A.; Paulson, A. T. Rheological Concepts for Probing Ingredient Interactions in Food System. In Ingredient Interactions: Effect on Food Quality; Gaonkar, A. G., Ed.; Marcel Dekker: New York, 1995; pp 45–83.