2,090
Views
20
CrossRef citations to date
0
Altmetric
Original Article

Preparation and structural properties of amylose complexes with quercetin and their preliminary evaluation in delivery application

, , , , , & show all
Pages 1445-1462 | Received 24 Feb 2019, Accepted 30 Jul 2019, Published online: 21 Aug 2019

References

  • Waxman, A.;. Why a Global Strategy on Diet, Physical Activity and Health? Nutrition and Fitness: Mental Health. Aging Implementation Healthy Diet Physi Activity Lifestyle. 2005, 95, 162–166.
  • Nwakoby, I. E.; Reddy, K.; Patel, P.; Shah, N.; Sharma, S.; Bhaskaran, M.; Gibbons, N.; Kapasi, A. A.; Singhal, P. C. Fas-Mediated Apoptosis of Neutrophils in Sera of Patients with Infection. Infect. Immun. 2001, 69(5), 3343–3349. DOI: 10.1128/IAI.69.5.3343-3349.2001.
  • Crespy, V.; Morand, C.; Manach, C.; Besson, C.; Demigne, C.; Remesy, C. Part of Quercetin Absorbed in the Small Intestine Is Conjugated and Further Secreted in the Intestinal Lumen. Am J Physiol-Gastroint Liver Physiol. 1999, 277(1), 120–126. DOI: 10.1152/ajpgi.1999.277.1.G120.
  • Juan, D.; Rosario, J.; Milagros, G.; Raquel, P. P.; Felix, V.; Francisco, P. V.; Antonio, Z.; Juan, T. Protective Effects of the Flavonoid Quercetin in Chronic Nitric Oxide Deficient Rats. J. Hypertens. 2002, 20(9), 1843–1854.
  • Milojevic S, Newton JM, Cummings JH, Gibson GR, Botham RL, Ring SG, Stockham M, Allwood MC. Amylose as a Coating for Drug Delivery to the Colon: Preparation and in Vitro Evaluation Using 5-aminosalicylic Acid Pellets. J. Control. Release. 1996, 38(1), 75–84. doi:10.1016/0168-3659(95)00112-3.
  • Häckl, L. P. N.; Cuttle, G.; Dovichi, S. S.; Lima-Landman, M. T.; Nicolau, M. Inhibition of Angiotesin-converting Enzyme by Quercetin Alters the Vascular Response to Brandykinin and Angiotensin I. Pharmacology. 2002, 65(4), 182–186. DOI: 10.1159/000064341.
  • Kakran, M.; Sahoo, N. G.; Li, L. Dissolution Enhancement of Quercetin through Nanofabrication, Complexation, and Solid Dispersion. Colloids Surf B-Biointerfaces. 2011, 88(1), 121–130. DOI: 10.1016/j.colsurfb.2011.06.020.
  • Mcclements, D. J.; Li, Y. Structured Emulsion-based Delivery Systems: Controlling the Digestion and Release of Lipophilic Food Components. Adv. Colloid Interface Sci. 2010, 159(2), 213–228. DOI: 10.1016/j.cis.2010.06.010.
  • Velikov, K. P.; Pelan, E. Colloidal Delivery Systems for Micronutrients and Nutraceuticals. Soft Matter. 2008, 4(10), 1964–1980. DOI: 10.1039/b804863k.
  • Dick, D. L.; Rao, T. V. S.; Sukumaran, D.; Lawrence, D. S. Molecular Encapsulation: Cyclodextrin-based Analogs of Heme-containing Proteins. J. Am. Chem. Soc. 1992, 114(7), 2664–2669. DOI: 10.1021/ja00033a046.
  • Panichpakdee, J.; Supaphol, P. Use of 2-hydroxypropyl-β-cyclodextrin as Adjuvant for Enhancing Encapsulation and Release Characteristics of Asiaticoside within and from Cellulose Acetate Films. Carbohydr. Polym. 2011, 85(1), 251–260. DOI: 10.1016/j.carbpol.2011.02.023.
  • Kayaci, F.; Uyar, T. Electrospun Zein Nanofibers Incorporating Cyclodextrins. Carbohydr. Polym. 2012, 90(1), 558–568. DOI: 10.1016/j.carbpol.2012.05.078.
  • Jing, G.; Luo, Z.; Xiong, F. U.; Luo, F.; Peng, Z. Effect of Enzymatic Pretreatment on the Synthesis and Properties of Phosphorylated Amphoteric Starch. Carbohydr. Polym. 2012, 88(3), 917–925. DOI: 10.1016/j.carbpol.2012.01.034.
  • Uchino, T.; Tozuka, Y.; Oguchi, T.; Yamamoto, K. The Change of the Structure of Amylose during the Inclusion of 2-naphthol in Sealed-heating Process. J. Incl. Phenom. Macrocycl. Chem. 2001, 39(1–2), 145–149. DOI: 10.1023/A:1008145407085.
  • Takeo, K.; Tokumura, A.; Kuge, T. Complexes of Starch and Its Related Materials with Organic Compounds. Part. X. X‐Ray Diffraction of Amylose‐Fatty Acid Complexes. Starch‐Starke. 1973, 25(11), 357–362.
  • Jin, X.; Zhao, W.; Ning, Y.; Bashari, M.; Wu, F.; Chen, H.; Na, Y.; Jin, Z.; Xu, B.; Zhang, L. Improved Stability and Controlled Release of ω3/ω6 Polyunsaturated Fatty Acids by Spring Dextrin Encapsulation. Carbohydr. Polym. 2013, 92(2), 1633–1640. DOI: 10.1016/j.carbpol.2012.11.037.
  • Lesmes, U.; Barchechath, J.; Shimoni, E. Continuous Dual Feed Homogenization for the Production of Starch Inclusion Complexes for Controlled Release of Nutrients. Innov. Food Sci. Emerg. Technol. 2008, 9(4), 0–515. DOI: 10.1016/j.ifset.2007.12.008.
  • Lesmes, U.; Cohen, S. H.; Shener, Y.; Shimoni, E. Effects of Long Chain Fatty Acid Unsaturation on the Structure and Controlled Release Properties of Amylose Complexes. Food Hydrocolloids. 2009, 23(3), 667–675. DOI: 10.1016/j.foodhyd.2008.04.003.
  • Cardoso, M. B.; Putaux, J. L.; Nishiyama, Y.; Helbert, W.; Hÿtch, M.; Silveira, N. P.; Chanzy, H. Single Crystals of V-amylose Complexed with Alpha-naphthol. Biomacromolecules. 2007, 8(4), 1319–1326. DOI: 10.1021/bm0611174.
  • Oguchi, T.; Yamasato, H.; Limmatvapirat, S.; Yonemochi, E.; Yamamoto, K. Structural Change and Complexation of Strictly Linear Amylose Induced by Sealed-heating with Salicylic Acid. J Chem Soc. Faraday Trans. 1998, 94(7), 923–927. DOI: 10.1039/a707848j.
  • Rutschmann, M. A.; Solms, J. Formation of Inclusion Complexes of Starch with Different Organic Compounds. I: Method of Evaluation of Binding Profiles with Menthone as an Example.Lebensmittle-Wissenschaft und-Technologie. 1989, 22(5), 240–244.
  • Tozuka, Y.; Takeshita, A.; Nagae, A.; Wongmekiat, A. Specific Inclusion Mode of Guest Compounds in the Amylose Complex Analyzed by Solid State NMR Spectroscopy. Chem. Pharm. Bull. 2006, 54(8), 1097–1101. DOI: 10.1248/cpb.54.1097.
  • Sweedman, M. C.; Hasjim, J.; Tizzotti, M. J.; Schäfer, C.; Gilbert, R. G. Effect of Octenylsuccinic Anhydride Modification on β-amylolysis of Starch. Carbohydr. Polym. 2013, 97(1), 9–17. DOI: 10.1016/j.carbpol.2013.04.041.
  • Ward, R. M.; Gao, Q.; De Bruyn, H.; Gilbert, R. G.; Fitzgerald, M. A. Improved Methods for the Structural Analysis of the Amylose-rich Fraction from Rice Flour. Biomacromolecules. 2006, 7(3), 866–876. DOI: 10.1021/bm050617e.
  • Bruner, R.;. Determination of Reducing Value: 3, 5-dinitrosalicylic Acid Method. Methods Carbohydr Chem. 1964, 4, 67–71.
  • Gilbert, G.; Spragg, S. Iodimetric Determination of Amylose. Methods Carbohydr Chem. 1964, 4, 168–169.
  • Chen, C.; Zhang, B.; Fu, X. A Novel Polysaccharide Isolated from Mulberry Fruits (murus Alba L.) And Its Selenide Derivative: Structural Characterization and Biological activities[J]. Food Funct. 2016, 7, 2886–2897. DOI: 10.1039/C6FO00370B.
  • Holm, J.; Lundquist, I.; Björck, I.; Eliasson, A. C.; Asp, N. G. Degree of Starch Gelatinization, Digestion Rate of Starch in Vitro, and Metabolic Response in Rats. Am. J. Clin. Nutr. 1988, 47(6), 1010–1016.
  • Suzuki, T.; Chiba, A.; Yarno, T. Interpretation of Small Angle X-ray Scattering from Starch on the Basis of Fractals. Carbohydr. Polym. 1997, 34(4), 357–363. DOI: 10.1016/S0144-8617(97)00170-7.
  • Jang, H. F.; Robertson, A. G.; Seth, R. S. Transverse Dimensions of Wood Pulp Fibres by Confocal Laser Scanning Microscopy and Image Analysis. J. Mater. Sci. 1992, 27(23), 6391–6400. DOI: 10.1007/BF00576290.
  • Zhong, L.; Bo, C.; Hu, Y.; Zhang, Y.; Zou, G. Complexation of Resveratrol with Cyclodextrins: Solubility and Antioxidant Activity. Food Chem. 2009, 113(1), 17–20. DOI: 10.1016/j.foodchem.2008.04.042.
  • Lalush, I.; Bar, H.; Zakaria, I.; Eichler, S.; Shimoni, E. Utilization of Amylose-lipid Complexes as Molecular Nanocapsules for Conjugated Linoleic Acid. Biomacromolecules. 2005, 6(1), 121–130. DOI: 10.1021/bm049644f.
  • Tomasik, P.; Jane, J.; Spence, K.; Andernegg, J. Starch Ferrates. Starch‐Starke. 1995, 47(2), 68–72. DOI: 10.1002/star.19950470207.
  • Peng, S.; Zou, L.; Zhou, W. Encapsulation of Lipophilic Polyphenols into Nanoliposomes Using pH-Driven Method: Advantages and Disadvantages. J. Agric. Food Chem. 2019. DOI: 10.1021/acs.jafc.9b01602.
  • Tackett, J. E.;. FT-IR Characterization of Metal Acetates in Aqueous Solution. Appl. Spectrosc. 1989, 43(3), 483–489. DOI: 10.1366/0003702894202931.
  • Cheng, W.; Luo, Z.; Li, L.; Fu, X. Preparation and Characterization of Debranched-starch/phosphatidylcholine Inclusion Complexes. J. Agric. Food Chem. 2015, 63(2), 634–641. DOI: 10.1021/jf504133c.
  • Pralhad, T.; Rajendrakumar, K. Study of Freeze-dried Quercetin-cyclodextrin Binary Systems by DSC, FT-IR, X-ray Diffraction and SEM Analysis. J. Pharm. Biomed. Anal. 2004, 34(2), 333–339.
  • Gessler K, Isabel Usón, Takaha T. V-Amylose at Atomic Resolution: X-Ray Structure of a Cycloamylose with 26 Glucose Residues (cyclomaltohexaicosaose)[j]. Proc. Natl. Acad. Sci. U. S. A. 1999, 96(8), 4246–4251. doi:10.1073/pnas.96.8.4246.
  • Hsien-Chih, H. W.; Sarko, A. The Double-Helical Molecular Structure of Crystalline A-Amylose[J]. Carbohydr. Res. 1978, 61(1), 27–40. DOI: 10.1016/S0008-6215(00)84464-X.
  • Zabar, S.; Lesmes, U.; Katz, I.; Shimoni, E.; Bianco-Peled, H. Structural Characterization of Amylose-long Chain Fatty Acid Complexes Produced the Acidification Method. Food Hydrocolloids. 2010, 24(4), 347–357. DOI: 10.1016/j.foodhyd.2009.10.015.
  • Biais, B.; Bail, P. L.; Robert, P.; Pontoire, B.; Buléon, A. Structural and Stoichiometric Studies of Complexes between Aroma Compounds and Amylose. Polymorphic Transitions and Quantification in Amorphous and Crystalline Areas. Carbohydr. Polym. 2006, 66(3), 306–315. DOI: 10.1016/j.carbpol.2006.03.019.
  • Yan, C.; Li, X.; Xiu, Z.; Hao, C. A Quantum-mechanical Study on the Complexation of β-cyclodextrin with Quercetin. J Mol Struct Theochem. 2006, 764(1), 95–100. DOI: 10.1016/j.theochem.2006.02.008.
  • Zhang, B.; Li, X.; Liu, J.; Xie, F.; Chen, L. Supramolecular Structure of A- and B-type Granules of Wheat Starch. Food Hydrocolloids. 2013, 31(1), 68–73. DOI: 10.1016/j.foodhyd.2012.10.006.
  • Zhu, J.; Li, L.; Chen, L.; li, X. Study on Supramolecular Structural Changes of Ultrasonic Treated Potato Starch Granules. Food Hydrocolloids. 2012, 29(1), 116–122. DOI: 10.1016/j.foodhyd.2012.02.004.
  • Zabar, S.; Lesmes, U.; Katz, I.; Shimoni, E.; Bianco-Peled, H. Studying Different Dimensions of Amylose–long Chain Fatty Acid Complexes: Molecular, Nano and Micro Level Characteristics. Food Hydrocolloids. 2009, 23(7), 1918–1925. DOI: 10.1016/j.foodhyd.2009.02.004.
  • Gidley, M. J.;. Molecular Mechanisms Underlying Amylose Aggregation and gelation[J]. Macromolecules. 1989, 22(1), 351–358. DOI: 10.1021/ma00191a064.
  • Cohen, R.; Orlova, Y.; Kovalev, M.; Ungar, Y.; Shimoni, E. Structural and Functional Properties of Amylose Complexes with Genistein. J. Agric. Food Chem. 2008, 56(11), 4212–4218. DOI: 10.1021/jf800255c.
  • Villano, D.; Fernández-Pachón, M. S.; Moyá, M. L.; Troncoso, A. M.; García-Parrilla, M. C. Radical Scavenging Ability of Polyphenolic Compounds Towards DPPH Free Radical. Talanta. 2007, 71(1), 230–235. DOI: 10.1016/j.talanta.2006.03.050.
  • Jullian, C.; Moyano, L.; Yanez, C.; Olea-Azar, C. Complexation of Quercetin with Three Kinds of Cyclodextrins: an Antioxidant Study. Spectroc Acta Pt A Molec Biomolec Spectr. 2007, 67(1), 230–234. DOI: 10.1016/j.saa.2006.07.006.
  • Alvarez-Parrilla, E.; Rosa, L. A. D. L.; Torres-Rivas, F.; Rodrigo-Garcia, J.; González-Aguilar, G. A. Complexation of Apple Antioxidants: Chlorogenic Acid, Quercetin and Rutin by β -cyclodextrin (β -CD). J. Incl. Phenom. Macrocycl. Chem. 2005, 53(1–2), 121–130. DOI: 10.1007/s10847-005-1620-z.
  • Biliaderis, C. G.; Galloway, G. Crystallization Behavior of amylose-V Complexes: Structure-property Relationships. Carbohydr. Res. 1989, 189(12), 31–48. DOI: 10.1016/0008-6215(89)84084-4.
  • Heinemann, C.; Zinsli, M.; Renggli, A.; Escher, F.; Conde-Petit, B. Influence of Amylose-flavor Complexation on Build-up and Breakdown of Starch Structures in Aqueous Food Model Systems. LWT - Food Sci. Technol. 2005, 38(8), 885–894. DOI: 10.1016/j.lwt.2004.08.016.