1,135
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Milk oligopeptide inhibition of (α)-tocopherol fortified linoleic acid oxidation

ORCID Icon, , , , &
Pages 1576-1593 | Received 31 Mar 2019, Accepted 13 Aug 2019, Published online: 06 Sep 2019

References

  • Elias, P. M.; Brown, B. E.; Ziboh, V. A. The Permeability Barrier in Essential Fatty Acid Deficiency: Evidence for a Direct Role for Linoleic Acid in Barrier Function. J. Invest. Dermatol. 1980, 74, 230–233. DOI: 10.1111/1523-1747.ep12541775.
  • Sanders, T. A. B.;. Polyunsaturated Fatty Acids in the Food Chain in Europe. Am. J. Clin. Nutr. 2000, 71, 176–178. DOI: 10.1093/ajcn/71.1.176s.
  • Li, G. P.; Singh, A.; Liu, Y. D.; Sunderland, B.; Li, D. Comparative Effects of Sandalwood Seed Oil on Fatty Acid Profiles and Inflammatory Factors in Rats. Lipids. 2013, 48, 105–113. DOI: 10.1007/s11745-012-3752-4.
  • Mateos, R.; Trujillo, M.; Carmen Pérez-Camino, M.; Moreda, W.; Cert, A. Relationships between Oxidative Stability, Triacylglycerol Composition, and Antioxidant Content in Olive Oil Matrices. J. Agric. Food Chem. 2005, 53, 5766–5771. DOI: 10.1021/jf0504263.
  • Girardi, F.; Cichelli, A.; Perri, E.; Basti, C.; d’Alessandro, N. Oxidative Treatments of Solid Olive Residues : Effects on Phenolic and Fatty Acid Fractions. Eur. J. Lipid Sci. Technol. 2014, 116, 352–359. DOI: 10.1002/ejlt.201300083.
  • Rubilar, M.; Morales, E.; Sáez, R.; Acevedo, F.; Palma, B.; Villarroel, M.; Shene, C. Polyphenolic Fractions Improve the Oxidative Stability of Microencapsulated Linseed Oil. Eur. J. Lipid Sci. Technol. 2012, 114, 760–771. DOI: 10.1002/ejlt.201100230.
  • Cao, J.; Li, H. Y.; Xia, X.; Zou, X. G.; Li, J.; Zhu, X. M.; Deng, Z. Y. Effect of Fatty Acid and Tocopherol on Oxidative Stability of Vegetable Oils with Limited Air. Int. J. Food. Prop. 2015, 18, 808–820. DOI: 10.1080/10942912.2013.864674.
  • Samaranayaka, A. G. P.; Li-chan, E. C. Y. Food-derived Peptidic Antioxidants: A Review of Their Production, Assessment, and Potential Applications. J. Funct. Foods. 2011, 3, 229–254. DOI: 10.1016/j.jff.2011.05.006.
  • Tironi, V. A.; Añón, M. C. Antioxidant Activity of Amaranth Protein Hydrolysate against Thermal Oxidation of Vegetable Oils. J. Am. Oil Chem. Soc. 2014, 91, 1583–1594. DOI: 10.1007/s11746-014-2509-z.
  • Power, O.; Jakeman, P.; FitzGerald, R. J. Antioxidative Peptides: Enzymatic Production, in Vitro and in Vivo Antioxidant Activity and Potential Applications of Milk-derived Antioxidative Peptides. Amino Acids. 2013, 44, 797–820. DOI: 10.1007/s00726-012-1393-9.
  • Skall Nielsen, N.; Debnath, D.; Jacobsen, C. Oxidative Stability of Fish Oil Enriched Drinking Yoghurt. Int. Dairy J. 2007, 17, 1478–1485. DOI: 10.1016/j.idairyj.2007.04.011.
  • Farvin, K. H. S.; Baron, C. P.; Nielsen, N. S.; Jacobsen, C. Antioxidant Activity of Yoghurt Peptides : Part 1- in Vitro Assays and Evaluation in ω-3 Enriched Milk. Food Chem. 2010, 123, 1081–1089. DOI: 10.1016/j.foodchem.2010.05.067.
  • Rossini, K.; Noreña, C. P. Z.; Cladera-Olivera, F.; Brandelli, A. Casein Peptides with Inhibitory Activity on Lipid Oxidation in Beef Homogenates and Mechanically Deboned Poultry Meat. LWT - Food Sci. Technol. 2009, 42, 862–867. DOI: 10.1016/j.lwt.2008.11.002.
  • Hogan, S.; Zhang, L.; Li, J. R.; Wang, H. J.; Zhou, K. Q. Development of Antioxidant Rich Peptides from Milk Protein by Microbial Proteases and Analysis of Their Effects on Lipid Peroxidation in Cooked Beef. Food Chem. 2009, 117, 438–443. DOI: 10.1016/j.foodchem.2009.04.040.
  • Hernández-Ledesma, B.; Dávalos, A.; Bartolomé, B.; Amigo, L. Preparation of Antioxidant Enzymatic Hydrolysates from α -lactalbumin and β-Lactoglobulin- Identification of Active Peptides by HPLC-MS/MS. J. Agric. Food Chem. 2005, 53, 588–593. DOI: 10.1021/jf048626m.
  • Hernández-Ledesma, B.; Miralles, B.; Amigo, L.; Ramos, M.; Recio, I. Identification of Antioxidant and ACE-inhibitory Peptides in Fermented Milk. J. Sci. Food Agric. 2005, 85, 1041–1048. DOI: 10.1002/jsfa.2063.
  • Li, X. R.; Yan, Y. H. Comparative Study of the Interactions between Ovalbumin and Five Antioxidants by Spectroscopic Methods. J. Fluoresc. 2017, 27, 213–225. DOI: 10.1007/s10895-016-1948-3.
  • Li, X. R.; Chen, D. J.; Wang, G. K.; Lu, Y. Study of Interaction between Human Serum Albumin and Three Antioxidants : Ascorbic Acid, a -tocopherol, and Proanthocyanidins. Eur. J. Med. Chem. 2013, 70, 22–36. DOI: 10.1016/j.ejmech.2013.09.033.
  • Young Park, E.; Nakamura, Y.; Sato, K.; Matsumura, Y. Effects of Amino Acids and Peptide on Lipid Oxidation in Emulsion Systems. J. Am. Chem. Soc. 2012, 89, 477–484.
  • Kim, S. K.; Kim, Y. T.; Byun, H. G.; Nam, K. S.; Joo, D. S.; Isolation, S. F. Characterization of Antioxidative Peptides from Gelatin Hydrolysate of Alaska Pollack Skin. J. Agric. Food Chem. 2001, 49, 1984–1989. DOI: 10.1021/jf000494j.
  • Huang, W. Y.; Majumder, K.; Wu, J. P. Oxygen Radical Absorbance Capacity of Peptides from Egg White Protein Ovotransferrin and Their Interaction with Phytochemicals. Food Chem. 2010, 123, 635–641. DOI: 10.1016/j.foodchem.2010.04.083.
  • Saito, K.; Jin, D. H.; Ogawa, T.; Muramoto, K.; Hatakeyama, E.; Yasuhara, T.; Nokihara, K. Antioxidative Properties of Tripeptide Libraries Prepared by the Combinatorial Chemistry. J. Agric. Food. Chem. 2003, 51, 3668–3674. DOI: 10.1021/jf021191n.
  • Yuan, H. N.; Lv, J. M.; Gong, J. Y.; Xiao, H. L.; Zhao, G. S.; Xiao, G. N.; Xu, H.; Wang, W. C. Microbial Transglutaminase Enhances Antioxidant Activity of Yogurt through Altering Pattern of Water-soluble Peptides and Increasing Release of Amino Acids. Int. J. Food Sci. Technol. 2018, 53, 1030–1044. DOI: 10.1111/ijfs.13679.
  • Kunimoto, M.; Inoue, K.; Nojima, S. Effect of Ferrous Ion and Ascorbate-induced Lipid Peroxidation on Liposomal Membranes. Biochim. Biophys. Acta. Biomembr. 1981, 646, 169–178. DOI: 10.1016/0005-2736(81)90284-4.
  • Yamamoto, K.; Takahashi, M.; Niki, E. Role of Iron and Ascorbic Acid in the Oxidation of Methyl Linoleate Micelles. Chem. Lett. 1987, 16, 1149–1152. DOI: 10.1246/cl.1987.1149.
  • Leonard, T. R.; Gregory, W. T.; Michael, L. C.; Gerald, C. C.; Raphael, B. O.; David, B. O. Lipid Peroxidation and the Thiobarbituric Acid Assay: Standardization of the Assay When Using Saturated and Unsaturated Fatty Acids. Korean. Soc. Biochem. Mol. Biol. 2004, 37, 749–752.
  • Hornero-Méndez, D.; Pérez-Gálvez, A.; Mínguez-Mosquera, I. A Rapid Spectrophotometric Method for the Determination of Peroxide Value in Food Lipids with High Carotenoid Content. J. Am. Oil Chem. Soc. 2001, 78, 1151–1155. DOI: 10.1007/s11746-001-0404-y.
  • Laguerre, M.; López-Giraldo, L. J.; Lecomte, J.; Baréa, B.; Cambon, E.; Tchobo, P. F.; Baroun, N.; Villeneuve, P. Conjugated Autoxidizable Triene (CAT) Assay: A Novel Spectrophotometric Method for Determination of Antioxidant Capacity Using Triacylglycerol as Ultraviolet Probe. Anal. Biochem. 2008, 380, 282–290. DOI: 10.1016/j.ab.2008.06.006.
  • Tyson, C. A.; Frazier, J. M. In Vitro Toxicity Indicators (section VII Lipid Peroxidation); Academic Press, Inc: San Diego, CA, 1994.
  • Yuan, H. N.; Lv, J. M.; Gong, J. Y.; Xiao, G. N.; Zhu, R. Y.; Li, L.; Qiu, J. N. Secondary Structures and Their Effects on Antioxidant Capacity of Antioxidant Peptides in Yogurt. Int. J. Food Prop. 2018, 21, 2167–2180. DOI: 10.1080/10942912.2018.1501700.
  • Rossi, M.; Alamprese, C.; Ratti, S. Tocopherols and Tocotrienols as Free Radical-scavengers in Refined Vegetable Oils and Their Stability during Deep-fat Frying. Food Chem. 2007, 102, 812–817. DOI: 10.1016/j.foodchem.2006.06.016.
  • Upston, J. M.; Terentis, A. C.; Stocker, R. Tocopherol-mediated Peroxidation of Lipoproteins: Implications for Vitamin E as a Potential Antiatherogenic Supplement. Faseb. J. 1999, 13, 977–994. DOI: 10.1096/fasebj.13.9.977.
  • Pratt, D. A.; Tallmant, K. A.; Porter, N. A. Free Radical Oxidation of Polyunsaturated Lipids: New Mechanistic Insights and the Development of Peroxyl Radical Clocks. Acc. Chem. Res. 2011, 44, 458–467. DOI: 10.1021/ar200024c.
  • Barclay, L. R. C.; Ingold, K. U. Autoxidation of A Model Membrane. A Comparision of the Autoxidation of Egg Lecithin Phosphatidylcholine in Water and in Chlorobenzene. J. Am. Chem. Soc. 1980, 102, 7792–7794. DOI: 10.1021/ja00546a033.
  • Li, Y. W.; Li, B.; He, J. G.; Qian, P. Structure–Activity Relationship Study of Antioxidative Peptides by QSAR Modeling: The Amino Acid Next to C-terminus Affects the Activity. J. Pept. Sci. 2011, 17, 454–462. DOI: 10.1002/psc.1345.
  • Darwish, S. M.; Abu Sharkh, S. E.; Abu Teir, M. M.; Makharza, S. A.; Abu-hadid, M. M. Spectroscopic Investigations of Pentobarbital Interaction with Human Serum Albumin. J. Mol. Struct. 2009, 963, 122–129. DOI: 10.1016/j.molstruc.2009.10.023.
  • Ni, Y. N.; Lin, D. Q.; Kokot, S. Synchronous Fluorescence, UV–Visible Spectrophotometric, and Voltammetric Studies of the Competitive Interaction of Bis (1, 10-phenanthroline) Copper (II) Complex and Neutral Red with DNA. Anal. Biochem. 2006, 352, :231–242. DOI: 10.1016/j.ab.2006.02.031.
  • Han, X. L.; Tian, F. F.; Ge, Y. S.; Jiang, F. L.; Lai, L.; Li, W. D.; Yu, Q. L. Y.; Wang, J.; Lin, C.; Liu, Y. Spectroscopic, Structural and Thermodynamic Properties of Chlorpyrifos Bound to Serum Albumin: A Comparative Study between BSA and HSA. J. Photochem. Photobiol. B. 2012, 109, 1–11. DOI: 10.1016/j.jphotobiol.2011.12.010.
  • Poureshghi, F.; Ghandforoushan, P.; Safarnejad, A.; Soltani, S. Interaction of an Antiepileptic Drug, Lamotrigine with Human Serum Albumin (HSA): Application of Spectroscopic Techniques and Molecular Modeling Methods. J. Photochem. Photobiol. B. 2017, 166, 187–192. DOI: 10.1016/j.jphotobiol.2016.09.046.
  • Agarwal, S.; Jangir, D. K.; Mehrotra, R. Spectroscopic Studies of the Effects of Anticancer Drug Mitoxantrone Interaction with Calf-thymus DNA. J. Photochem. Photobiol. B. 2013, 120, 177–182. DOI: 10.1016/j.jphotobiol.2012.11.001.
  • Wang, Y. Q.; Zhang, H. M.; Zhang, G. C.; Tao, W. H.; Tang, S. H. Interaction of the Flavonoid Hesperidin with Bovine Serum Albumin: A Fluorescence Quenching Study. J. Lumin. 2007, 126, 211–218. DOI: 10.1016/j.jlumin.2006.06.013.
  • II’ichew, Y. V.; Perry, J. L.; Simon, J. D. Interaction of Ochratoxin A with Human Serum Albumin. A Common Binding Site of Ochratoxin A and Warfarin in Subdomain IIA. J. Phys. Chem. 2002, 106, 460–465. DOI: 10.1021/jp012315m.
  • Darwish, S. M.; Ghithan, J.; Abuteir, M. M.; Faroun, M.; Abu-hadid, M. M. Spectroscopic Investigations of Pentobarbital Interaction with Transthyretin. J. Spectrosc. 2012, 2013, 1–10. DOI: 10.1155/2013/927962.
  • Zandomeneghi, G.; Krebs, M. R. H.; McCammon, M. G.; Fändrich, M. FTIR Reveals Structural Differences between Native β-sheet Proteins and Amyloid Fibrils. Protein Sci. 2004, 13, 3314–3321. DOI: 10.1110/ps.041024904.
  • Zhang, G. W.; Zhao, N.; Hu, X.; Tian, J. Interaction of Alpinetin with Bovine Serum Albumin : Probing of the Mechanism and Binding Site by Spectroscopic methods.Spectrochimica. Acta. A. Mol. Biomol. Spectrosc. 2010, 76, 410–417. DOI: 10.1016/j.saa.2010.04.009.
  • Kong, J. L.; Yu, S. N. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures. Acta Biochim. Biophys. Sin. 2007, 39, 549–559. DOI: 10.1111/j.1745-7270.2007.00320.x.
  • Darwish, S. M.; Aiaidah, S. Y.; Khalid, I. M.; Abuteir, M. M.; Qawasmi, L. Spectroscopic Investigations of β -amyloid Interactions with Propofol and L-Arginine. J. Biophys. 2015, 5, 50–67.
  • Cian, R. E.; Vioque, J.; Drago, S. R. Structure–Mechanism Relationship of Antioxidant and ACE I Inhibitory Peptides from Wheat Gluten Hydrolysate Fractionated by pH. Food Res. Int. 2015, 69, 216–223. DOI: 10.1016/j.foodres.2014.12.036.