1,712
Views
19
CrossRef citations to date
0
Altmetric
Original Article

Orthogonal optimization of beef stir-fried process followed by isolation and identification of the umami peptides by consecutive chromatography and LC-Q-TOF/MS

, , , & ORCID Icon
Pages 1773-1785 | Received 31 May 2019, Accepted 27 Sep 2019, Published online: 22 Oct 2019

References

  • Dinh, T. T. N.; Legako, J. F.; Miller, M. F.; Brooks, J. C. Effects of USDA Quality Grade and Cooking on Water-soluble Precursors of Beef Flavor. Meat Sci. 2018, 146, 122–130. DOI: 10.1016/j.meatsci.2018.08.008.
  • Gul, J.; Avijit, G.; Shambadeb, B.; Hiren, K.; Sujeet, K. S.; Kailash, C.; Lalit, K. S.; Mukesh, T. Wildlife Forensics in Nullifying the False Accusation: A Case to Deal with Raw Meat. Mitochondrial DNA B. 2018, 4(1), 736–739. DOI: 10.1080/23802359.2019.1565928.
  • D’evoli, L.; Salvatore, P.; Lucarini, M.; Nicoli, S.; Aguzzi, A.; Gabrielli, P.; Lombardi-Boccia, L. Nutritional Value of Traditional Italian Meat-based Dishes: Influence of Cooking Methods and Recipe Formulation. Int. J. Food Sci. Nutr. 2009, 60, 38–49. DOI: 10.1080/09637480802322103.
  • Stea, S.; Pickering, G. J. Optimizing Messaging to Reduce Red Meat Consumption. Environ. Commun. 2019, 13, 633–648. DOI: 10.1080/17524032.2017.1412994.
  • Kang, L.; Alim, A.; Song, H. Identification and Characterization of Flavor Precursor Peptide from Beef Enzymatic Hydrolysate by Maillard Reaction. J. Chromatogr. B. 2019, 1104, 176–181. DOI: 10.1016/j.jchromb.2018.10.025.
  • Tamura, M.; Nakatsuka, T.; Tada, M.; Kawasaki, Y.; Kikuchi, E.; Okai, H. The Relationship between Taste and Primary Structure of “delicious Peptide” (lys-gly-asp-glu-glu-ser-leu-ala) from Beef Soup. Agric Biol Chem. 1989, 53(2), 319–325. DOI: 10.1080/00021369.1989.10869317.
  • Mouritsen, O. G.; Khandelia, H. Molecular Mechanism of the Allosteric Enhancement of the Umami Taste Sensation. Febs J. 2012, 279(17), 3112–3120. DOI: 10.1111/j.1742-4658.2012.08690.x.
  • Narukawa, M.; Morita, K.; Uemura, M.; Kitada, R.; Oh, S. H.; Hayashi, Y. Nerve and Behavioral Responses of Mice to Various Umami Substances. Biosci., Biotechnol., Biochem. 2011, 75(11), 2125–2131. DOI: 10.1271/bbb.110401.
  • Zhang, J.; Zhao, M.; Su, G.; Lin, L. Identification and Taste Characteristics of Novel Umami and Umami-enhancing Peptides Separated from Peanut Protein Isolate Hydrolysate by Consecutive Chromatography and UPLC-ESI-QTOF-MS/MS. Food Chem. 2019, 278, 674–682. DOI: 10.1016/j.foodchem.2018.11.114.
  • Zhang, Y.; Venkitasamy, C.; Pan, Z.; Liu, W.; Zhao, L. Novel Umami Ingredients: Umami Peptides and Their Taste. J. Food Sci. 2017, 82(1), 16–23. DOI: 10.1111/1750-3841.13576.
  • Temussi, P. A.;. The Good Taste of Peptides. J. Pept. Sci. 2012, 18(2), 73–82. DOI: 10.1002/psc.1428.
  • Robert, F.; Blank, I.; Fay, L. B.; Beksan, E.; Hofmann, T.; Schieberle, P. Synthesis, Structure, and Activity of Novel Glycoconjugates Exhibiting Umami Taste. Challenges in Taste Chemistry and Biology. ACS Symposium Series, 2003; pp 195–209. chapter 13. DOI: 10.1021/bk-2003-0867.ch013.
  • Ogasawara, M.; Katsumata, T.; Egi, M. Taste Properties of Maillard-reaction Products Prepared from 1000 to 5000 Da Peptide. Food Chem. 2006, 99(3), 600–604. DOI: 10.1016/j.foodchem.2005.08.040.
  • Rhyu, M. R.; Kim, E. Y. Umami Taste Characteristics of Water Extract of Doenjang, a Korean Soybean Paste: Low-molecular Acidic Peptides May Be a Possible Clue to the Taste. Food Chem. 2011, 127(3), 1210–1215. DOI: 10.1016/j.foodchem.2011.01.128.
  • Liu, J.; Liu, M.; He, C.; Song, H.; Chen, F. Effect of Thermal Treatment on the Flavor Generation from Maillard Reaction of Xylose and Chicken Peptide. LWT Food Sci. Technol. 2015, 64(1), 316–325. DOI: 10.1016/j.lwt.2015.05.061.
  • Kawai, M.; Okiyama, A.; Ueda, Y. Taste Enhancements between Various Amino Acids and IMP. Chem. Senses. 2002, 27(8), 739–745. DOI: 10.1093/chemse/27.8.739.
  • Yamasaki, Y.; Maekawa, K. Synthesis of a Peptide with Delicious Taste. J. Agric. Biol. Chem. 1980, 44(1), 93–97. DOI: 10.1080/00021369.1980.10863911.
  • Bleibaum, R. N.; Stone, H.; Tan, T.; Lavreche, S.; Saint-Martin, E.; Isz, S. Comparison of Sensory and Consumer Results with Electronic Nose and Tongue Sensors for Apple Juices. Food Qual. Preference. 2002, 13, 409–422. DOI: 10.1016/S0950-3293(02)00017-4.
  • Yuan, H. N.; Lv, J. M.; Gong, J. Y.; Xiao, G. N.; Zhu, R. Y.; Li, L.; Qiu, J. N. Secondary Structures and Their Effects on Antioxidant Capacity of Antioxidant Peptides in Yogurt. Int. J. Food Prop. 2018, 21(1), 2167–2180. DOI: 10.1080/10942912.2018.1501700.
  • Kang, B. S.; Lee, J. E.; Park, H. J. Electronic Tongue-based Discrimination of Korean Rice Wines (makgeolli) Including Prediction of Sensory Evaluation and Instrumental Measurements. Food Chem. 2014, 151, 317–323. DOI: 10.1016/j.foodchem.2013.11.084.
  • Han, Y.; Wang, X.; Cai, Y.; Li, Z.; Zhao, L.; Wang, H.; Jin, J.; Cai, Y.; Xu, L.; Zhu, L. Sensor-array-based Evaluation and Grading of Beef Taste Quality. Meat Sci. 2017, 129, 38–42. DOI: 10.1016/j.meatsci.2017.02.016.
  • Kong, Y.; Yang, X.; Ding, Q.; Zhang, Y.; Sun, B.; Chen, H.; Sun, Y. Comparison of Non-volatile Umami Components in Chicken Soup and Chicken Enzymatic Hydrolysate. Food Res. Int. 2017, 102, 559–566. DOI: 10.1016/j.foodres.2017.09.038.
  • Zheng, H.; Zhang, Q.; Quan, J.; Zheng, Q.; Xi, W. Determination of Sugars, Organic Acids, Aroma Components, and Carotenoids in Grapefruit Pulps. Food Chem. 2016, 205, 112–121. DOI: 10.1016/j.foodchem.2016.03.007.
  • Suami, T.; Hough, L. Molecular Mechanisms of Sweet Taste 2: Glucopyranose, Fructopyranose and Sucrose. J. Carbohydr. Chem. 1992, 11, 953–967. DOI: 10.1080/07328303.1992.11760691.
  • Bechhofer, R. E.; Dunnett, C. W. Multiple Comparisons for Orthogonal Contrasts: Examples and Tables. Technometrics. 1982, 24(3), 213–222. DOI: 10.2307/1268681.
  • Dang, Y.; Gao, X.; Ma, F.; Wu, X. Comparison of Umami Taste Peptides in Water-soluble Extractions of Jinhua and Parma Hams. LWT Food Sci. Technol. 2015, 60(2), 1179–1186. DOI: 10.1016/j.lwt.2014.09.014.
  • Su, G.; Cui, C.; Zheng, L.; Yang, B.; Ren, J.; Zhao, M. Isolation and Identification of Two Novel Umami and Umami-enhancing Peptides from Peanut Hydrolysate by Consecutive Chromatography and MALDI-TOF/TOF MS. Food Chem. 2012, 135(2), 479–485. DOI: 10.1016/j.foodchem.2012.04.130.
  • Nishimura, T.; Kato, H. Taste of Free Amino Acids and Peptides. Food Rev. Int. 1988, 4, 175–194. DOI: 10.1080/87559128809540828.
  • Zhuang, M.; Zhao, M.; Lin, L.; Dong, Y.; Chen, H.; Feng, M.; Sun-Waterhouse, D.; Su, G. Macroporous Resin Purification of Peptides with Umami Taste from Soy Sauce. Food Chem. 2016, 190, 338–344. DOI: 10.1016/j.foodchem.2015.05.105.
  • Zhuang, M.; Lin, L.; Zhao, M.; Dong, Y.; Sun-Waterhouse, D.; Chen, H.; Qiu, C.; Su, G. Sequence, Taste and Umami-enhancing Effect of the Peptides Separated from Soy Sauce. Food Chem. 2016, 206, 174–181. DOI: 10.1016/j.foodchem.2016.03.058.
  • Zhang, N.; Ayed, C.; Wang, W.; Liu, Y. Sensory-guided Analysis of Key Taste-active Compounds in Pufferfish (takifugu Obscurus). J. Agric. Food Chem. 2019, in press. DOI: 10.1021/acs.jafc.8b06047.
  • Sentandreu, M. A.; Stoeva, S.; Aristoy, M.; Laib, K.; Voelter, W.; Toldrá, E. Identification of Small Peptides Generated in Spanish Dry‐cured Ham. J. Food Sci. 2003, 68(1), 64–69. DOI: 10.1111/j.1365-2621.2003.tb14115.x.
  • Normah, I.; Jamilah, B.; Saari, N.; Man, Y. B. C. Chemical and Taste Characteristics of Threadfin Bream (nemipterus Japonicus) Hydrolysate. J. Sci. Food Agric. 2004, 84(11), 1290–1298. DOI: 10.1002/jsfa.1743.
  • Kim, M. R.; Yukio, K.; Kim, K. M.; Lee, C. H. Tastes and Structures of Bitter Peptide, Asparagine-alanine-leucine-proline-glutamate, and Its Synthetic Analogues. J. Agric. Food Chem. 2008, 56(14), 5852–5858. DOI: 10.1021/jf7036664.
  • Kim, I. M. R.; Kawamura, Y.; Lee, C. H. Isolation and Identification of Bitter Peptides of Tryptic Hydrolysate of Soybean 11S Glycinin by Reverse‐phase High‐performance Liquid Chromatography. J. Food Sci. 2003, 68(8), 2416–2422. DOI: 10.1111/j.1365-2621.2003.tb07039.x.
  • Shinoda, I.; Nosho, Y.; Kouge, K.; Ishibashi, N.; Okai, H.; Tatsumi, K.; Kikuchi, E. Variation in Bitterness Potency When Introducing Gly-Gly Residue into Bitter Peptides. Agric Biol Chem. 1987, 51(8), 2103–2110. DOI: 10.1080/00021369.1987.10868361.
  • Kato, H.; Rhue, M. R.; Nishimura, T. Role of Free Amino Acids and Peptides in Food Taste. In Flavor Chemistry; Teranishi, R., Buttery, R. G., Shahidi, F., Eds.; American Chemical Society: Washington DC, ACS Symposium Series, 1989; Vol. 388, pp 158–174.