1,587
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Comparison of the bioactive chemical components and antioxidant activities in three tissues of six varieties of Citrus grandis ‘Tomentosa’ fruits

, , &
Pages 1848-1862 | Received 04 Jul 2019, Accepted 14 Oct 2019, Published online: 31 Oct 2019

References

  • Smeriglio, A.; Cornara, L.; Denaro, M.; Barreca, D.; Burlando, B.; Xiao, J.; Trombetta, D. Antioxidant and Cytoprotective Activities of an Ancient Mediterranean Citrus (Citrus Lumia risso) Albedo Extract: Microscopic Observations and Polyphenol Characterization. Food Chem. 2019, 279, 347–355. DOI: 10.1016/j.foodchem.2018.11.138.
  • Li, P. L.; Liu, M. H.; Hu, J. H.; Su, W. W. Systematic Chemical Profiling of Citrus Grandis ‘tomentosa’ by Ultra-fast Liquid chromatography/diode-array detector/quadrupole Time-of-flight Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2014, 90, 167–179. DOI: 10.1016/j.jpba.2013.11.030.
  • Yu, X.; Liu, Q.; Xie, Z.; Lam, S.; Xu, X. Chromatographic Fingerprint Analysis of Exocarpium Citri Grandis by High-Performance Liquid Chromatography Coupled with Diode-Array Detector. Food Anal. Methods. 2014, 8(7), 1868–1875. DOI: 10.1007/s12161-014-0071-9.
  • Zeng, X.; Su, W.; Zheng, Y.; Liu, H.; Li, P.; Zhang, W.; Liang, Y.; Bai, Y.; Peng, W.; Yao, H. UFLC-Q-TOF-MS/MS-Based Screening and Identification of Flavonoids and Derived Metabolites in Human Urine after Oral Administration of Exocarpium Citri Grandis Extract. Molecules. 2018, 23(4), 895. DOI: 10.3390/molecules23040895.
  • Liang, Y.; Huang, Z.; Chen, H.; Zhang, T.; Ito, Y. Preparative Isolation and Purification of Two Closely Related Glycosidic Flavonoids from Exocarpium Citri Grandis by High-Speed Countercurrent Chromatography. J. Liq. Chromatogr. Relat. Technol. 2007, 30(3), 419–430. DOI: 10.1080/10826070601084886.
  • Lim, H. K.; Moon, J. Y.; Kim, H.; Cho, M.; Cho, S. K. Induction of Apoptosis in U937 Human Leukaemia Cells by the Hexane Fraction of an Extract of Immature Citrus Grandis Osbeck Fruits. Food Chem. 2009, 114(4), 1245–1250. DOI: 10.1016/j.foodchem.2008.10.088.
  • He, X.; Zhang, L.; Chen, J.; Sui, J.; Yi, G.; Wu, J.; Ma, Y. Correlation between Chemical Composition and Antifungal Activity of Clausena Lansium Essential Oil against Candida Spp. Molecules. 2019, 24, 7. DOI: 10.3390/molecules24071394.
  • Duan, L.; Guo, L.; Dou, L. L.; Yu, K. Y.; Liu, E. H.; Li, P. Comparison of Chemical Profiling and Antioxidant Activities of Fruits, Leaves, Branches, and Flowers of Citrus Grandis ‘tomentosa’. J. Agric. Food Chem. 2014, 62(46), 11122–11129. DOI: 10.1021/jf5036355.
  • Jiang, K.; Song, Q.; Wang, L.; Xie, T.; Wu, X.; Wang, P.; Yin, G.; Ye, W.; Wang, T. Antitussive, Expectorant and Anti-inflammatory Activities of Different Extracts from Exocarpium Citri Grandis. J. Ethnopharmacol. 2014, 156, 97–101. DOI: 10.1016/j.jep.2014.08.030.
  • Wang, X.; Xu, Y.; Zhang, S.; Cao, L.; Huang, Y.; Cheng, J.; Wu, G.; Tian, S.; Chen, C.; Liu, Y.;, et al. Genomic Analyses of Primitive, Wild and Cultivated Citrus Provide Insights into Asexual Reproduction. Nat. Genet. 2017, 49(5), 765–772. DOI: 10.1038/ng.3839.
  • Gottwald, T. R. Current Epidemiological Understanding of Citrus Huanglongbing. Annu. Rev. Phytopathol. 2010, 48, 119–139. DOI: 10.1146/annurev-phyto-073009-114418.
  • Tamene, D.; Endale, M. Antibacterial Activity of Coumarins and Carbazole Alkaloid from Roots of Clausena Anisata. Adv. Pharmacol. Sci. 2019, 2019, 1–8. DOI: 10.1155/2019/5419854.
  • Kong, F.; Bi, Y.; Yan, C.; Zeng, Z. Orthogonal Test Design for Optimization of the Ultrasonic Extraction of Naringin from Citrus Grandis Tomentosa. J. Med. Plants Res. 2013, 7(12), 720–726. DOI: 10.5897/JMPR12.104.
  • Luo, Y. L.; Zhang, C. C.; Li, P. B.; Nie, Y. C.; Wu, H.; Shen, J. G.; Su, W. W. Naringin Attenuates Enhanced Cough, Airway Hyperresponsiveness and Airway Inflammation in a Guinea Pig Model of Chronic Bronchitis Induced by Cigarette Smoke. Int. Immunopharmacol. 2012, 13(3), 301–307. DOI: 10.1016/j.intimp.2012.04.019.
  • Gao, S.; Li, P.; Yang, H.; Fang, S.; Su, W. Antitussive Effect of Naringin on Experimentally Induced Cough in Guinea Pigs. Planta Med. 2011, 77(1), 16–21. DOI: 10.1055/s-0030-1250117.
  • Karakaya, S.; Şimşek, D.; Özbek, H.; Güvenalp, Z.; Altanlar, N.; Kazaz, C.; Kılıc, C. Antimicrobial Activities of Extracts and Isolated Coumarins from the Roots of Four Ferulago Species Growing in Turkey. Iran. J. Pharm. Res. World. 2019, 18(3), 1516–1529. DOI: 10.22037/IJPR.2019.1100718.
  • Wang, G.; Liu, Y.; Zhang, L.; An, L.; Chen, R.; Liu, Y.; Luo, Q.; Li, Y.; Wang, H.; Xue, Y. Computational Study on the Antioxidant Property of Coumarin-fused Coumarins. Food Chem. 2020, 304, 125446. DOI: 10.1016/j.foodchem.2019.125446.
  • Dai, H.; Huang, M.; Qian, J.; Liu, J.; Meng, C.; Li, Y.; Ming, G.; Zhang, T.; Wang, S.; Shi, Y.;, et al. Excellent Antitumor and Antimetastatic Activities Based on Novel coumarin/pyrazole Oxime Hybrids. Eur. J. Med. Chem. 2019, 166, 470–479. DOI: 10.1016/j.ejmech.2019.01.070.
  • Ayodele, O. O.; Onajobi, F. D.; Osoniyi, R. O. In Vitro Anticoagulant Effect of Crassocephalum Crepidioides Leaf Methanol Extract and Fractions on Human Blood. J. Exp. Pharmacol. 2019, 11, 99–107. DOI: 10.2147/JEP.S218261.
  • Luo, M.; Luo, H.; Hu, P.; Yang, Y.; Wu, B.; Zheng, G. Evaluation of Chemical Components in Citri Reticulatae Pericarpium of Different Cultivars Collected from Different Regions by GC-MS and HPLC. Food Sci. Nutr. 2018, 6(2), 400–416. DOI: 10.1002/fsn3.569.
  • Xie, Z.; Liu, Q.; Liang, Z.; Zhao, M.; Yu, X.; Yang, D.; Xu, X. The GC/MS Analysis of Volatile Components Extracted by Different Methods from Exocarpium Citri Grandis. J. Anal. Methods Chem. 2013, 2013, 1–8. DOI: 10.1155/2013/918406.
  • Conde-Hernández, L. A.; Guerrero-Beltrán, J. Á. Total Phenolics and Antioxidant Activity of Piper Auritum and Porophyllum Ruderale. Food Chem. 2014, 142, 455–460. DOI: 10.1016/j.foodchem.2013.07.078.
  • Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radical Biol. Med. 1999, 26(9–10), 1231–1237. DOI: 10.1016/S0891-5849(98)00315-3.
  • Brand-Williams, W.; Cuvelier, M. E.; Berset, C. L. W. T. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28(1), 25–30. DOI: 10.1016/S0023-6438(95)80008-5.
  • Benzie, I. F.; Strain, J. J. Ferric reducing/Antioxidant Power Assay: Direct Measure of Total Antioxidant Activity of Biological Fluids and Modified Version for Simultaneous Measurement of Total Antioxidant Power and Ascorbic Acid Concentration. Methods Enzymol. 1999, 299, 15–27. DOI: 10.1016/S0076-6879(99)99005-5.
  • Zhang, Y.; Sun, Y.; Xi, W.; Shen, Y.; Qiao, L.; Zhong, L.; Ye, X.; Zhou, Z. Phenolic Compositions and Antioxidant Capacities of Chinese Wild Mandarin (Citrus Reticulata blanco) Fruits. Food Chem. 2014, 145, 674–680. DOI: 10.1016/j.foodchem.2013.08.012.
  • Chang, X.; Ye, Y.; Pan, J.; Lin, Z.; Qiu, J.; Guo, X.; Lu, Y. Comparative Assessment of Phytochemical Profiles and Antioxidant Activities in Selected Five Varieties of Wampee (Clausena lansium) Fruits. Int. J. Food Sci. Technol. 2018, 53(12), 2680–2686. DOI: 10.1111/ijfs.13877.
  • Dong, J.; Ma, X.; Wei, Q.; Peng, S.; Zhang, S. Effects of Growing Location on the Contents of Secondary Metabolites in the Leaves of Four Selected Superior Clones of Eucommia Ulmoides. Ind. Crops Prod. 2011, 34(3), 1607–1614. DOI: 10.1016/j.indcrop.2011.06.007.
  • Cheng, L.; Ren, Y.; Lin, D.; Peng, S.; Zhong, B.; Ma, Z. The Anti-inflammatory Properties of Citrus Wilsonii Tanaka Extract in IPS-induced RAW 264.7 And Primary Mouse Bone Marrow-derived Dendritic Cells. Molecules. 2017, 22, 7. DOI: 10.3390/molecules22071213.
  • Chung, H.; Chung, W. Y.; Yoo, E. S.; Cho, S. K.; Oh, S. K.; Kim, Y. S. Characterization of Volatile Aroma-active Compounds in Dangyooja (Citrus Grandis osbeck). J. Korean Soc. Appl. Biol. Chem. 2012, 55(1), 133–136. DOI: 10.1007/s13765-012-0023-2.
  • Gonzalez-Mas, M. C.; Rambla, J. L.; Lopez-Gresa, M. P.; Blazquez, M. A.; Granell, A. Volatile Compounds in Citrus Essential Oils: A Comprehensive Review. Front. Plant Sci. 2019, 10, 12. DOI: 10.3389/fpls.2019.00012.
  • Cai, R.; Zhang, M.; Cui, L.; Yuan, Y.; Yang, Y.; Wang, Z.; Yue, T. Antibacterial Activity and Mechanism of Thymol against Alicyclobacillus Acidoterrestris Vegetative Cells and Spores. LWT Food Sci. Technol. 2019, 105, 377–384. DOI: 10.1016/j.lwt.2019.01.066.
  • Kong, J.; Zhang, Y.; Ju, J.; Xie, Y.; Guo, Y.; Cheng, Y.; Qian, H.; Quek, S. Y.; Yao, W. Antifungal Effects of Thymol and Salicylic Acid on Cell Membrane and Mitochondria of Rhizopus Stolonifer and Their Application in Postharvest Preservation of Tomatoes. Food Chem. 2019, 285, 380–388. DOI: 10.1016/j.foodchem.2019.01.099.
  • Islam, M. T.; Khalipha, A. B. R.; Bagchi, R.; Mondal, M.; Smrity, S. Z.; Uddin, S. J.; Shilpi, J. A.; Rouf, R. Anticancer Activity of Thymol: A Literature-based Review and Docking Study with Emphasis on Its Anticancer Mechanisms. IUBMB Life. 2019, 71(1), 9–19. DOI: 10.1002/iub.1935.
  • Geyikoglu, F.; Yilmaz, E. G. L.; Erol, H. S.; Koc, K.; Cerig, S.; Ozek, N. S.; Aysin, F. Hepatoprotective Role of Thymol in Drug-Induced Gastric Ulcer Model. Ann. Hepatol. 2018, 17(6), 980–991. DOI: 10.5604/01.3001.0012.7198.
  • Costa, M. F.; Durco, A. O.; Rabelo, T. K.; Barreto, R. S. S.; Guimaraes, A. G. Effects of Carvacrol, Thymol and Essential Oils Containing Such Monoterpenes on Wound Healing: A Systematic Review. J. Pharm. Pharmacol. 2019, 71(2), 141–155. DOI: 10.1111/jphp.13054.
  • Xiang, J.; Apea-Bah, F. B.; Ndolo, V. U.; Katundu, M. C.; Beta, T. Profile of Phenolic Compounds and Antioxidant Activity of Finger Millet Varieties. Food Chem. 2019, 275, 361–368. DOI: 10.1016/j.foodchem.2018.09.120.
  • Lien, E. J.; Ren, S.; Bui, H. H.; Wang, R. Quantitative Structure-activity Relationship Analysis of Phenolic Antioxidants. Free Radical Biol. Med. 1999, 26(3–4), 285–294. DOI: 10.1016/S0891-5849(98)00190-7.
  • Zhang, L.; Liu, P.; Li, L.; Huang, Y.; Pu, Y.; Hou, X.; Song, L. Identification and Antioxidant Activity of Flavonoids Extracted from Xinjiang Jujube (Ziziphus Jujube mill.) Leaves with Ultra-high Pressure Extraction Technology. Molecules. 2018, 24(1). DOI: 10.3390/molecules24010122.
  • Fan, R.; Xie, Y.; Zhu, C.; Qiu, D.; Zeng, J.; Liu, Z. Structural Elucidation of an Acidic Polysaccharide from Citrus Grandis ‘tomentosa’ and Its Anti-proliferative Effects on LOVO and SW620 Cells. Int. J. Biol. Macromol. 2019. DOI: 10.1016/j.ijbiomac.2019.07.117.
  • Silva, K. D. R. R.; Sirasa, M. S. F. Antioxidant Properties of Selected Fruit Cultivars Grown in Sri Lanka. Food Chem. 2018, 238, 203–208. DOI: 10.1016/j.foodchem.2016.08.102.