2,484
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Thermophysical properties prediction of brown seaweed (Saccharina latissima) using artificial neural networks (ANNs) and empirical models

, &
Pages 1966-1984 | Received 01 Jul 2019, Accepted 06 Nov 2019, Published online: 09 Dec 2019

References

  • Dillehay, T. D.; Ramirez, C.; Pino, M.; Collins, M. B.; Rossen, J.; Pinot-Navarro, J. D. Monte Verde: Seaweed, Food, Medicine and the Peopling of South America. Science. 2008, 320, 784–789. DOI: 10.1126/science.1156533.
  • Fleurence, J.; Levine, I. Seaweed in Health and Disease Prevention; Academic Press: San Diego, 2016.
  • Nash, C.;. The History of Aquaculture; John Wiley & Sons: Iowa, 2010.
  • FAO. Fishery and Aquaculture Statistics. Aquaculture Production 1950-2012 (Fishstatj); FAO Fisheries and Aquaculture Department [online or CD-ROM]: Rome, 2014. Updated 2014 http://www.fao.org/fishery/statistics/software/fishstatj/en.
  • Craigie, J. S.;. Seaweed Extract Stimuli in Plant Science and Agriculture. J. Appl. Phycol. 2011, 23, 321–335. DOI: 10.1007/s10811-010-9560-4.
  • Mujumdar, A. S.; Passos, M. L. Drying: Innovative Technologies and Trends in Research and Development. Mujumdar AS, Suvachittanont S (Ed). In Developments in Drying, Vol 2; Kasetsart University Press: Bangkok, Thailand, 2000; pp 235–268.
  • Gallali, Y. M.; Abujnah, Y. S.; Bannani, F. K. Preservation of Fruits and Vegetables Using Solar Drier: A Comparative Study of Natural and Solar Drying. III. Chemical Analysis and Sensory Evaluation Data of the Dried Samples (Grapes, Figs, Tomatoes and onions)”. Renew. Energy. 2000, 19, 203–212. DOI: 10.1016/S0960-1481(99)00032-4.
  • Murthy, M. V. R.;. A Review of New Technologies, Models and Experimental Investigations of Solar Driers. Renew. Sustain. Energy Rev. 2009, 13, 835–844. DOI: 10.1016/j.rser.2008.02.010.
  • Costa, B. R.; Rocha, S. F.; Rodrigues, M. C. K.; Pohndorf, R. S.; Larrosa, A. P. Q.; Pinto, L. A. A. Physicochemical Characteristics of the Spirulina sp. Dried in Heat Pump and Conventional Tray Dryers. Int. J. Food Sci. Technol. 2015, 50, 2614–2620. DOI: 10.1111/ijfs.12930.
  • Dang, T. T.; Vuong, Q. V.; Schreider, M. J.; Bowyer, M. C.; Altena, I. A. V.; Scarlett, C. J. The Effects of Drying on Physico-chemical Properties and Antioxidant Capacity of the Brown Alga (Hormosira banksii (Turner) decaisne). J. Food Process Preserv. 2016, 41, e13025. DOI: 10.1111/jfpp.13025.
  • Gupta, S.; Cox, S.; Abu-Ghannam, N. Effect of Different Drying Temperatures on the Moisture and Phytochemical Constituents of Edible Irish Brown Seaweed. Lebensm Wiss Technol. 2011, 44(5), 1266–1272. DOI: 10.1016/j.lwt.2010.12.022.
  • Lann, K. L.; Jegou, C.; Stiger-Pouvreau, V. Effect of Different Conditioning Treatments on Total Phenolic Content and Antioxidant Activities in Two Sargassacean Species: Comparison of the Frondose Sargassum muticum (Yendo) Fensholt and the Cylindrical Bifurcaria bifurcata R. Ross. Phycol. Res. 2008, 56(4), 238–245. DOI: 10.1111/j.1440-1835.2008.00505.x.
  • Ling, A. L. M.; Yasir, S.; Matanjun, P.; Abu Bakar, M. F. Effect of Different Drying Techniques on the Phytochemical Content and Antioxidant Activity of Kappaphycus alvarezii. J. Appl. Phycol. 2015, 27(4), 1717–1723. DOI: 10.1007/s10811-014-0467-3.
  • Neoh, Y. Y.; Matanjun, P.; Lee, J. S. Comparative Study of Drying Methods on Chemical Constituents of Malaysian Red Seaweed. Drying Technol. 2016, 34(14), 1745–1751. DOI: 10.1080/07373937.2016.1212207.
  • Tello-Ireland, C.; Lemus-Mondaca, R.; Vega-Gálvez, A.; López, J.; DiScala, K. Influence of Hot-air Temperature on Drying Kinetics, Functional Properties, Colour, Phycobiliproteins, Antioxidant Capacity, Texture and Agar Yield of Alga Gracilaria chilensis. Lebensm Wiss Technol. 2011, 44(10), 2112–2118. DOI: 10.1016/j.lwt.2011.06.008.
  • Vairappan, C. S.; Razalie, R.; Elias, U. M.; Ramachandram, T. Effects of Improved Post-harvest Handling on the Chemical Constituents and Quality of Carrageenan in Red Alga, Kappaphycus alvarezii Doty. J. Appl. Phycol. 2014, 26(2), 909–916. DOI: 10.1007/s10811-013-0117-1.
  • Wong, K.; Cheung, P. C. Influence of Drying Treatment on Three Sargassum Species. J. Appl. Phycol. 2001, 13(1), 43–50. DOI: 10.1023/A:1008149215156.
  • Sappati, P. K.; Nayak, B.; VanWalsum, G. P.; Mulrey, O. T. Combined Effects of Seasonal Variation and Drying Methods on the Physicochemical Properties and Antioxidant Activity of Sugar Kelp (Saccharina latissima). J. Appl. Phycol. 2019, 31(2), 1311–1332. DOI: 10.1007/s10811-018-1596-x.
  • Boukouvalas, C. J.; Krokida, M. K.; Maroulis, Z. B.; Marinos-Kouris, D. Effect of Material Moisture Content and Temperature on the True Density of Foods. Int. J. Food Prop. 2006, 9(1), 109–125. DOI: 10.1080/10942910500473970.
  • Boukouvalas, C. J.; Krokida, M. K.; Maroulis, Z. B.; Marinos-Kouris, D. Density and Porosity: Literature Data Compilation for Foodstuffs. Int. J. Food Prop. 2006, 9(4), 715–746. DOI: 10.1080/10942910600575690.
  • Sablani, S. S.; Rahman, M. S. Pore Formation in Selected Foods as a Function of Shelf Temperature during Freeze Drying. Drying Technol. 2002, 20(7), 1379–1391. DOI: 10.1081/DRT-120005857.
  • Rahman, M. S.;. A Theoretical Model to Predict the Formation of Pores in Foods during Drying. Int. J. Food Prop. 2003, 6(1), 61–72. DOI: 10.1081/JFP-120016624.
  • Choi, Y.; Okos, M. R. Effects of Temperature and Composition on the Thermal Properties of Foods. In Journal of Food Process and Applications 1(1): 93-101. Elsevier Applied Science Publishers: London, 1986.
  • Sablani, S. S.; Baik, O.; Marcotte, M. Neural Networks for Predicting Thermal Conductivity of Bakery Products. J. Food Eng. 2002, 52(3), 299–304. DOI: 10.1016/S0260-8774(01)00119-4.
  • Hassan, H. F.; Ramaswamy, H. S. Measurement and Targeting of Thermophysical Properties of Carrot and Meat Based Alginate Particles for Thermal Processing Applications. J. Food Eng. 2011, 107(1), 117–126. DOI: 10.1016/j.jfoodeng.2011.05.028.
  • Rahman, S.;. Food Properties Handbook, 2nd ed.; CRC Press: Boca Raton, 2009.
  • Carslaw, H. S.; Jaeger, J. C. Conduction of Heat in Solids; Clarendon Press: Oxford, 1959.
  • Sweat, V. E.;. Experimental Values of Thermal Conductivity of Selected Fruits and Vegetables. J. Food Sci. 1974, 39, 1080–1083. DOI: 10.1111/j.1365-2621.1974.tb07323.x.
  • Coimbra, J. S. R.; Gabas, A. L.; Minim, L. A.; Garcia Rojas, E. E.; Telis, V. R. N.; Telis-Romero, J. Density, Heat Capacity and Thermal Conductivity of Liquid Egg Products. J. Food Eng. 2006, 74(2), 186–190. DOI: 10.1016/j.jfoodeng.2005.01.043.
  • Rojas, E. E. G.; Coimbra, J. S. R.; Telis-Romero, J. Thermophysical Properties of Cotton, Canola, Sunflower and Soybean Oils as a Function of Temperature. Int. J. Food Prop. 2013, 16(7), 1620–1629. DOI: 10.1080/10942912.2011.604889.
  • Phinney, D. M.; Frelka, J. C.; Heldman, D. R. Composition-based Prediction of Temperature-dependent Thermophysical Food Properties: Reevaluating Component Groups and Prediction Models: Predicting Thermophysical Properties of Foods. J. Food Sci. 2017, 82(1), 6–15. DOI: 10.1111/1750-3841.13564.
  • Wang, N.; Brennan, J. G. Changes in Structure, Density and Porosity of Potato during Dehydration. J. Food Eng. 1995, 24(1), 61–76. DOI: 10.1016/0260-8774(94)P1608-Z.
  • Murphy, R. Y.; Marks, B. P.; Marcy, J. A. Apparent Specific Heat of Chicken Breast Patties and Their Constituent Proteins by Differential Scanning Calorimetry. J. Food Sci. 1998, 63(1), 88–91. DOI: 10.1111/j.1365-2621.1998.tb15682.x.
  • Tang, J.; Sokhansanj, S.; Sosulski, F. W.; Slinkard, A. E. Lentils Quality-effects of Artificial Drying and Six-month Storage. J. Inst. Can. Sci.Technol. 1991, 24(5), 283–286. DOI: 10.1016/S0315-5463(91)70166-1.
  • Sopade, P. A.; Halley, P. J.; D’arcy, B. R. Specific Heat Capacity of Australian Honeys from 35 to 165 C as a Function of Composition Using Differential Scanning Calorimetry: Specific Heat Capacity of Honeys. J. Food Process. Preserv. 2006, 30(2), 99–109. DOI: 10.1111/j.1745-4549.2006.00051.x.
  • Hua, C.; Huili, S.; Xiangxi, Y.; Xin, C. Artificial Neural Network in Food Processing. 30th Chinese Control Conference, 2687–2692, Yantai, China., July 22–24, 2011.
  • Huang, Y.; Kangas, L. J.; Rasco, B. A. Applications of Artificial Neural Networks (ANNs) in Food Science. Crit. Rev. Food Sci. Nutr. 2007, 47(2), 113–126. DOI: 10.1080/10408390600626453.
  • Topuz, A.;. Predicting Moisture Content of Agricultural Products Using Artificial Neural Networks. Adv. Eng. Softw. 2010, 41, 464–470. DOI: 10.1016/j.advengsoft.2009.10.003.
  • Sappati, P. K.; Nayak, B.; van Walsum, G. P. Effect of Glass Transition on the Shrinkage of Sugar Kelp (Saccharina latissima) during Hot Air Convective Drying. J. Food Eng. 2017, 210, 50–61. DOI: 10.1016/j.jfoodeng.2017.04.018.
  • AOAC. Official Methods of Analysis (Sixteenth ed.); Association of Official Analytical Chemists: Washington, DC, 1999.
  • AOAC Method 993.13. Official Methods of Analysis (Fifteenth ed.); Association of Official Analytical Chemists: Washington, DC, 1990.
  • Schiener, P.; Black, K. D.; Stanley, M. S.; Green, D. H. The Seasonal Variation in the Chemical Composition of the Kelp Species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. J. Appl. Phycol. 2015, 27(1), 363–373. DOI: 10.1007/s10811-014-0327-1.
  • AOAC Method 948.15. Fat (Crude) in Seafood Acid Hydrolysis Method. In Official Methods of Analysis (Eighteenth ed.); Association of Analytical Communities International: Gaithersburg, MD, 2005.
  • Merill, A. L.; Watt, B. K. Energy Values of Food: Basis and Derivation. In United States Department of Agriculture; Agriculture Handbook No 74, Agriculture Research Service: Washington, DC, 1973; Vol. 74, pp 2–3.
  • Bailey, C. H.; Thomas, L. M. A Method for the Determination of the Specific Gravity of Wheat and Other Cereals. USDA Bureau of Plant Industry Circular No. 99; U.S. Department of Agriculture: Washington, D.C, 1912.
  • Mohsenin, N. N.;. Physical Properties of Plant and Animal Materials; Gordon and Breach Science Publishers: New York, NY, 1986.
  • Balingasa, C. R.; Elepaño, A. R. Studies on Engineering Properties of Red Seaweed (Kappaphycus spp.). Philippines J. Agr.Bios. Eng. 2009, 7, 59.
  • Rao, M. A.;. Thermal Conductivity and Thermal Diffusivity of Process Variety Squash and White Potatoes. Trans. ASAE. 1975, 18(6), 1188–1192. DOI: 10.13031/2013.36767.
  • Puttongsiri, T.; Choosakul, N.; Sakulwilaingam, D. Moisture Content and Physical Properties of Instant Mashed Potato. International Conference on Nutrition and Food Sciences IPCBEE0, Singapore, 39. 2012.
  • Delgado, A. E.; Gallo, A.; De Piante, D.; Rubiolo, A. Thermal Conductivity of Unfrozen and Frozen Strawberry and Spinach. J. Food Eng. 1997, 31(2), 137–146. DOI: 10.1016/S0260-8774(96)00066-0.
  • Muramatsu, Y.; Tagawa, A.; Kasai, T. Effective Thermal Conductivity of Rice Flour and Whole and Skim Milk Powder. J. Food Sci. 2005, 70, 279–287. DOI: 10.1111/j.1365-2621.2005.tb07184.x.
  • Elansari, A. M.; Hobani, A. I. Effect of Temperature and Moisture Content on Thermal Conductivity of Four Types of Meat. Int. J. Food Prop. 2009, 12(2), 308–315. DOI: 10.1080/10942910701687519.
  • Bennett, A. H.; Chace, W. G., Jr; Cubbedge, R. H. Heat Transfer Properties and Characteristics of Appalachian Area ‘red Delicious’ Apple. ASHRAE Trans. 1969, 75(2), 133.
  • Minh, T. V.; Perry, J. S.; Bennett, A. H. Forced-air Precooling of White Potatoes in Bulk. ASHRAE Trans. 1969, 75(2), 87–94.
  • Riedel, L.;. Measurements of Thermal Diffusivity on Foodstuffs Rich in Water. Kaltetechnik. 1969, 21(11), 315–316.
  • Dickerson, R. W.; Read, R. B. Thermal Diffusivity of Meats. ASHRAE Trans. 1975, 81(1), 356.
  • USDA. Nutrient Database for Standard Reference, Release; 11. U.S. Department of Agriculture: Washington, DC, 1996.
  • Zabalaga, R. F.; La Fuente, C. I. A.; Tadini, C. C. Experimental Determination of Thermophysical Properties of Unripe Banana Slices (Musa cavendishii) during Convective Drying. J. Food Eng. 2016, 187, 62–69. DOI: 10.1016/j.jfoodeng.2016.04.020.
  • Yan, Z.; Sousa-Gallagher, M. J.; Oliveira, F. A. R. Shrinkage and Porosity of Banana, Pineapple and Mango Slices during Air-drying. J. Food Eng. 2008, 84(3), 430–440. DOI: 10.1016/j.jfoodeng.2007.06.004.
  • George, M.; Abraham, T. E. Polyionic Hydrocolloids for the Intestinal Delivery of Protein Drugs: Alginate and Chitosan - a Review. J. Control. Release. 2006, 114(1), 1–14. DOI: 10.1016/j.jconrel.2006.04.017.