1,147
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Impact peak force measurement of potato

, &
Pages 616-626 | Received 16 Dec 2019, Accepted 28 Mar 2020, Published online: 15 Apr 2020

References

  • Shengshi, X.; Chunguang, W.; Weigang, D. Model for the Prediction of Potato Impact Damage Depth. Int. J. Food Prop. 2018, 21(1), 2517–2526. DOI: 10.1080/10942912.2018.1534124.
  • Nikara, S.; Ahmadi, E.; Nia, A. A. Scanning Electron Microscopy Study of Microstructure Damage and Micromechanical Behavior of Potato Tissue by Impact during Storage. J. Food Process Eng. 2018. DOI: 10.1111/jfpe.12831.
  • Yingwang, G.; Chenbo, S.; Xiuqin, R.; Yibin, Y. Image Processing-aided FEA for Monitoring Dynamic Response of Potato Tubers to Impact Loading. Comput. Electron. Agric. 2018, 151, 21–30. DOI: 10.1016/j.compag.2018.05.027.
  • Peters, R. Damage of Potato Tubers, a Review. Potato Res. 1996, 39, 479–484. DOI: 10.1007/BF02358463.
  • Junwei, L.; Yunhai, M.; Jin, T.; Zichao, M.; Lidong, W.; Jiangtao, Y. Mechanical Properties and Microstructure of Potato Peels. Int. J. Food Prop. 2018, 21, 1395–1413. DOI: 10.1080/10942912.2018.1485031.
  • Romano, A.; Masi, P.; Aversano, R.; Carucci, F.; Palomba, S.; Carputo, D. Microstructure and Tuber Properties of Potato Varieties with Different Genetic Profiles. Food Chem. 2018, 239, 789–796. DOI: 10.1016/j.foodchem.2017.07.010.
  • Strehmel, N.; Praeger, U.; Konig, C.; Fehrle, I.; Erban, A.; Geyer, M.; Kopka, J.; van Dongen, J. T. Time Course Effects on Primary Metabolism of Potato (Solanum Tuberosum) Tuber Tissue after Mechanical Impact. Postharvest. Biol. Technol. 2010, 56, 109–116. DOI: 10.1016/j.postharvbio.2009.12.008.
  • Mathew, R.; Hyde, G. M. Potato Impact Damage Thresholds. Trans. Asae. 1997, 40, 705–709. DOI: 10.13031/2013.21290.
  • DăNilă, D. M. Assessing the Potato Impact Response Using a Pendulum Controlled and Designed by Computer. Bull. Transilvania Univ. Brasov. 2015, 8, 65–70.
  • Blahovec, J. Shape of Bruise Spots in Impacted Potatoes. Postharvest Biol. Technol. 2006, 39, 278–284. DOI: 10.1016/j.postharvbio.2005.11.004.
  • Aboonajmi, M.; Jahangiri, M.; Hassan-beygi, S. R. A Review on Application of Acoustic Analysis in Quality Evaluation of Agro-food Products. J. Food Process. Preserv. 2015, 6, 3175–3188. DOI: 10.1111/jfpp.12444.
  • Arturo, B.; Jorge Isidro, A.; Gustavo, G. Bayesian Classification of Ripening Stages of Tomato Fruit Using Acoustic Impact and Colorimeter Sensor Data. J. Com. Elec. Agric. 2008, 60(2), 113–121. DOI: 10.1016/j.compag.2007.07.005.
  • Fathizadeh, Z.; Aboonajmi, M.; Beygi, S. R. H. Nondestructive Firmness Prediction of Apple Fruit Using Acoustic Vibration Response. Sci. Hortic. 2020, 262. DOI: 10.1016/j.scienta.2019.109073.
  • Geyer, M. O.; Praeger, U.; König, C.; Graf, A.; Truppel, I.; Schlüter, O.; Herold, B. Measuring Behavior of an Acceleration Measuring Unit Implanted in Potatoes. Trans. ASABE.2009, 52(4), 1267–1274. DOI: 10.13031/2013.27770.
  • Rady, A. M. Evaluation of Mechanical Damage of Lady Rosetta Potato Tubers Using Different Methods. Int. J. Postharvest Technol. Innovation. 2015, 2, 125–148. DOI: 10.1504/IJPTI.2015.074322.
  • Zhizhen, L. Research on Potato Collision Problem and Key Mechanism of Sorting Equipment; Zhejiang University: China, 2016; pp 18–26.
  • Qi, L. Experimental Research on Damage Mechanism of Potato and Combine Harvester Design; Northwest A&F University: China, 2016; pp 11–21.
  • Bentini, M.; Caprara, C.; Martelli, R. Harvesting Damage to Potato Tubers by Analysis of Impacts Recorded with an Instrumented Sphere. Biosyst. Eng. 2006, 94, 75–85. DOI: 10.1016/j.biosystemseng.2006.02.007.
  • Canneyt, T. V.; Tijskens, E.; Ramon, H.; Verschoore, R.; Sonck, B. Development of a Predictive Tissue Discolouration Model Based on Electronic Potato Impacts. Biosyst. Eng. 2004, 88, 81–93. DOI: 10.1016/j.biosystemseng.2004.01.005.
  • Celik, H. K.; Cinar, R.; Yilmaz, D. Mechanical Collision Simulation of Potato Tubers. J. Food Process Eng. 2019, 42. DOI: 10.1111/jfpe.13078.
  • Caglayan, N.; Oral, O.; Celik, H. K.; Cinar, R.; Rodrigues, L. C. D. A.; Rennie, A. E. W. ; Akinci, I. Determination of Time Dependent Stress Distribution on a Potato Tuber during Drop Case. J. Food Process Eng. 2018, 41. DOI: 10.1111/jfpe.12869.
  • Jankowski, R. Non-linear Viscoelastic Modelling of Earthquake-induced Structural Pounding. Earthquake Eng. Struct. Dyn. 2005, 34, 595–611. DOI: 10.1002/eqe.434.
  • Jankowski, R. Analytical Expression between the Impact Damping Ratio and the Coefficient of Restitution in the Non-linear Viscoelastic Model of Structural Pounding. Earthquake Eng. Struct. Dyn. 2006, 35, 517–524. DOI: 10.1002/eqe.537.
  • Wenxi, W.; Xugang, H.; Xiuyong, W. Advanced Impact Force Model for Low-Speed Pounding between Viscoelastic Materials and Steel. J. Eng. Mech. 2017, 143(12).
  • Dongpin, J.; haiyan, H. Collision Vibration and Control; Science Press: China, 2005; pp 36–39.
  • Bajema, R. W.; Hyde, G. M. Instrumented Pendulum for Impact Characterization of Whole Fruit and Vegetable Specimens. Trans. ASAE. 1999, 41, 1399–1405. DOI: 10.13031/2013.17274.
  • Bing, F. Study on Physical Characteristics and Damage of Potato Tubers at Harvesting Stage; Gansu Agricultural University: China, 2018; pp 82–89.
  • Haiying, Q.; Chun, Y. High-yielding Cultivation Techniques of Potato in the Northern Alpine Region of China. Shanxi Agric. Sci. 2006, 2, 125&139.
  • Hongyuan, H.; Jinhua, W.; Qingnan, S.; Likang, Q. Quality Analysis and Utilization of Potato. Guizhou Agricultural Sciences. 2010, 11, 32–36.