1,563
Views
13
CrossRef citations to date
0
Altmetric
Original Article

Antioxidant profile of thinned young and ripe fruits of Chinese peach and nectarine varieties

ORCID Icon, ORCID Icon, , , &
Pages 1272-1286 | Received 12 Mar 2020, Accepted 10 Jul 2020, Published online: 10 Aug 2020

References

  • Liao, X.; Greenspan, P.; Pegg, R. B. Characterizing the Phenolic Constituents and Antioxidant Capacity of Georgia Peaches. Food Chem. 2019, 271, 345–353. DOI: 10.1016/j.foodchem.2018.07.163.
  • Kim, H.-R.; Kim, I.-D.; Dhungana, S. K.; Kim, M.-O.; Shin, D.-H. Comparative Assessment of Physicochemical Properties of Unripe Peach (Prunus Persica) and Japanese Apricot (Prunus mume). Asian Pac. J. Trop. Biomed. 2014, 4, 97–103. DOI: 10.1016/s2221-1691(14)60216-1.
  • Martin-Gorriz, B.; Torregrosa, A.; García Brunton, J. Post-bloom Mechanical Thinning for Can Peaches Using a Hand-held Electrical Device. Sci. Hortic. 2012, 144, 179–186. DOI: 10.1016/j.scienta.2012.07.003.
  • Hong, C.; Holtz, B. A.; Morgan, D. P.; Michailides, T. J. Significance of Thinned Fruit as a Source of the Secondary Inoculum of Monilinia Fructicola in California Nectarine Orchards. Plant Dis. 1997, 81, 519–524. DOI: 10.1094/PDIS.1997.81.5.519.
  • Chen, W.; Guo, Y.; Zhang, J.; Zhang, X.; Meng, Y. Effect of Different Drying Processes on the Physicochemical and Antioxidant Properties of Thinned Young Apple. Int. J. Food Eng. 2015, 11, 207–219. DOI: 10.1515/ijfe-2014-0211.
  • Nuncio-Jáuregui, N.; Nowicka, P.; Munera-Picazo, S.; Hernández, F.; Carbonell-Barrachina, Á. A.; Wojdyło, A. Identification and Quantification of Major Derivatives of Ellagic Acid and Antioxidant Properties of Thinning and Ripe Spanish Pomegranates. J. Funct. Foods. 2015, 12, 354–364. DOI: 10.1016/j.jff.2014.11.007.
  • Bae, H.; Yun, S. K.; Jun, J. H.; Yoon, I. K.; Nam, E. Y.; Kwon, J. H. Assessment of Organic Acid and Sugar Composition in Apricot, Plumcot, Plum,and Peach during Fruit Development. J. Appl. Bot. Food Qual. 2014, 87, 24–29. DOI: 10.5073/JABFQ.2014.087.004.
  • Sun, L.; Sun, J.; Chen, L.; Niu, P.; Yang, X.; Guo, Y. Preparation and Characterization of Chitosan Film Incorporated with Thinned Young Apple Polyphenols as an Active Packaging Material. Carbohydr. Polym. 2017, 163, 81–91. DOI: 10.1016/j.carbpol.2017.01.016.
  • Sun, L.; Sun, J.; Thavaraj, P.; Yang, X.; Guo, Y. Effects of Thinned Young Apple Polyphenols on the Quality of Grass Carp (Ctenopharyngodon idellus) Surimi during Cold Storage. Food Chem. 2017, 224, 372–381. DOI: 10.1016/j.foodchem.2016.12.097.
  • Sun, L.; Chen, W.; Meng, Y.; Yang, X.; Yuan, L.; Guo, Y.; Gidley, M. J. Interactions between Polyphenols in Thinned Young Apples and Porcine Pancreatic Alpha-amylase: Inhibition, Detailed Kinetics and Fluorescence Quenching. Food Chem. 2016, 208, 51–60. DOI: 10.1016/j.foodchem.2016.03.093.
  • Redondo, D.; Venturini, M. E.; Oria, R.; Arias, E. Inhibitory Effect of Microwaved Thinned Nectarine Extracts on Polyphenol Oxidase Activity. Food Chem. 2016, 197, 603–610. DOI: 10.1016/j.foodchem.2015.11.009.
  • Rossato, S. B.; Haas, C.; Raseira, M. C.; Moreira, J. C.; Zuanazzi, J. A. Antioxidant Potential of Peels and Fleshes of Peaches from Different Cultivars. J. Med. Food. 2009, 12, 1119–1126. DOI: 10.1089/jmf.2008.0267.
  • Nunes, C.; Santos, C.; Pinto, G.; Silva, S.; Lopesdasilva, J. A.; Saraiva, J. A.; Coimbra, M. A. Effects of Ripening on Microstructure and Texture of “Ameixa d’Elvas” Candied Plums. Food Chem. 2009, 115, 1094–1101. DOI: 10.1016/j.foodchem.2008.12.089.
  • Cao, X.; Islam, M. N.; Chitrakar, B.; Duan, Z.; Xu, W.; Zhong, S. Effect of Combined Chlorogenic Acid and Chitosan Coating on Antioxidant, Antimicrobial, and Sensory Properties of Snakehead Fish in Cold Storage. Food Sci. Nutr. 2019, 00, 1–9. DOI: 10.1002/fsn3.1378.
  • Raiola, A.; Pizzolongo, F.; Manzo, N.; Montefusco, I.; Spigno, P.; Romano, R.; Barone, A. A Comparative Study of the Physico-chemical Properties Affecting the Organoleptic Quality of Fresh and Thermally Treated Yellow Tomato Ecotype Fruit. Int. J. Food Sci. Technol. 2018, 53, 1219–1226. DOI: 10.1111/ijfs.13700.
  • Zheng, H.-Z.; Kim, Y.-I.; Chung, S.-K. A Profile of Physicochemical and Antioxidant Changes during Fruit Growth for the Utilisation of Unripe Apples. Food Chem. 2012, 131, 106–110. DOI: 10.1016/j.foodchem.2011.08.038.
  • Mokrani, A.; Madani, K. Effect of Solvent, Time and Temperature on the Extraction of Phenolic Compounds and Antioxidant Capacity of Peach (Prunus persica L.) Fruit. Sep. Purif. Technol. 2016, 162, 68–76. DOI: 10.1016/j.seppur.2016.01.043.
  • Song, J.; Bi, J.; Chen, Q.; Wu, X.; Lyu, Y.; Meng, X. Assessment of Sugar Content, Fatty Acids, Free Amino Acids, and Volatile Profiles in Jujube Fruits at Different Ripening Stages. Food Chem. 2019, 270, 344–352. DOI: 10.1016/j.foodchem.2018.07.102.
  • Sochor, J.; Skutkova, H.; Babula, P.; Zitka, O.; Cernei, N.; Rop, O.; Kizek, R. Mathematical Evaluation of the Amino Acid and Polyphenol Content and Antioxidant Activities of Fruits from Different Apricot Cultivars. Molecules. 2011, 16, 7428–7457. DOI: 10.3390/molecules16097428.
  • Brummell, D. A. Cell Wall Disassembly in Ripening Fruit. Funct. Plant Biol. 2006, 33, 103. DOI: 10.1071/fp05234.
  • Prasanna, V.; Prabha, T. N.; Tharanathan, R. N. Fruit Ripening Phenomena–an Overview. Crit. Rev. Food Sci. Nutr. 2007, 47, 1–19. DOI: 10.1080/10408390600976841.
  • Bowen, J. H.; Watkins, C. B. Fruit Maturity, Carbohydrate and Mineral Content Relationships with Watercore in ‘Fuji’ Apples. Postharvest Biol. Technol. 1997, 11, 31–38. DOI: 10.1016/S0925-5214(97)01409-9.
  • Prinsi, B.; Negri, A. S.; Fedeli, C.; Morgutti, S.; Negrini, N.; Cocucci, M.; Espen, L. Peach Fruit Ripening: A Proteomic Comparative Analysis of the Mesocarp of Two Cultivars with Different Flesh Firmness at Two Ripening Stages. Phytochemistry. 2011, 72, 1251–1262. DOI: 10.1016/j.phytochem.2011.01.012.
  • Gelly, M.; Recasens, I.; Girona, J.; Mata, M.; Arbones, A.; Rufat, J.; Marsal, J. Effects of Stage II and Postharvest Deficit Irrigation on Peach Quality during Maturation and after Cold Storage. J. Sci. Food Agric. 2004, 84, 561–568. DOI: 10.1002/jsfa.1686.
  • Celli, G. B.; Pereira-Netto, A. B.; Beta, T. Comparative Analysis of Total Phenolic Content, Antioxidant Activity, and Flavonoids Profile of Fruits from Two Varieties of Brazilian Cherry (Eugenia uniflora L.) Throughout the Fruit Developmental Stages. Food Res. Int. 2011, 44, 2442–2451. DOI: 10.1016/j.foodres.2010.12.036.
  • Redondo, D.; Arias, E.; Oria, R.; Venturini, M. E. Thinned Stone Fruits are a Source of Polyphenols and Antioxidant Compounds. J. Sci. Food Agric. 2017, 97, 902–910. DOI: 10.1002/jsfa.7813.
  • Cantin, C. M.; Moreno, M. A.; Gogorcena, Y. Evaluation of the Antioxidant Capacity, Phenolic Compounds, and Vitamin C Content of Different Peach and Nectarine [Prunus persica (L.) Batsch] Breeding Progenies. J. Agric. Food Chem. 2009, 57, 4586–4592. DOI: 10.1021/jf900385a.
  • Reig, G.; Iglesias, I.; Gatius, F.; Alegre, S. Antioxidant Capacity, Quality, and Anthocyanin and Nutrient Contents of Several Peach Cultivars [Prunus persica (L.) Batsch] Grown in Spain. J. Agric. Food Chem. 2013, 61, 6344–6357. DOI: 10.1021/jf401183d.
  • Font I Forcada, C.; Gradziel, T. M.; Gogorcena, Y.; Moreno, M. Á. Phenotypic Diversity among Local Spanish and Foreign Peach and Nectarine [Prunus persica (L.) Batsch] Accessions. Euphytica. 2014, 197, 261–277. DOI: 10.1007/s10681-014-1065-9.
  • Petersen, M.; Hans, J.; Matern, U. Biosynthesis of Phenylpropanoids and Related Compounds. Annu. Plant Rev. 2010, 40, 182–257. DOI: 10.1002/9781444320503.ch4.
  • Mokrani, A.; Krisa, S.; Cluzet, S.; Da Costa, G.; Temsamani, H.; Renouf, E.; Richard, T. Phenolic Contents and Bioactive Potential of Peach Fruit Extracts. Food Chem. 2016, 202, 212–220. DOI: 10.1016/j.foodchem.2015.12.026.
  • Cantín, C. M.; Gogorcena, Y.; Moreno, M. Á. Analysis of Phenotypic Variation of Sugar Profile in Different Peach and Nectarine [Prunus persica(L.) Batsch] Breeding Progenies. J. Sci. Food Agric. 2009, 89, 1909–1917. DOI: 10.1002/jsfa.3672.
  • Jiang, F.; Wang, Y.; Sun, H.; Yang, L.; Zhang, J.; Ma, L. Intracellular Compartmentation and Membrane Permeability to Sugars and Acids at Different Growth Stages of Peach. Sci. Hortic. 2013, 161, 210–215. DOI: 10.1016/j.scienta.2013.06.037.
  • Ruan, Y. L. Sucrose Metabolism: Gateway to Diverse Carbon Use and Sugar Signaling. Annu. Rev. Plant Biol. 2014, 65, 33–67. DOI: 10.1146/annurev-arplant-050213-040251.
  • Wu, B. H.; Quilot, B.; Génard, M.; Kervella, J.; Li, S. H. Changes in Sugar and Organic Acid Concentrations during Fruit Maturation in Peaches, P. Davidiana and Hybrids as Analyzed by Principal Component Analysis. Sci. Hortic. 2005, 103, 429–439. DOI: 10.1016/j.scienta.2004.08.003.
  • Etienne, A.; Génard, M.; Lobit, P.; Mbeguié-A-Mbéguié, D.; Bugaud, C. What Controls Fleshy Fruit Acidity? A Review of Malate and Citrate Accumulation in Fruit Cells. J. Exp. Bot. 2013, 64, 1451–1469. DOI: 10.1093/jxb/ert035.
  • Košir, I. J.; Kidrič, J. Identification of Amino Acids in Wines by One- and Two-Dimensional Nuclear Magnetic Resonance Spectroscopy. J. Agric. Food Chem. 2001, 49, 50–56. DOI: 10.1021/jf0008137.