2,616
Views
9
CrossRef citations to date
0
Altmetric
Review

Advancement of the preparation methods and biological activity of peptides from sesame oil byproducts: a review

, , ORCID Icon &
Pages 2189-2200 | Received 23 Jun 2020, Accepted 07 Nov 2020, Published online: 07 Dec 2020

References

  • Bedigian, D.;. History and Lore of Sesame in Southwest Asia[J]. Econ. Bot. 2004, 58, 329–353. DOI: 10.1663/0013-0001(2004)058.
  • Were, B. A.; Onkware, A. O.; Gudu, S.; Welander, M.; Carlsson, A. S. Seed Oil Content and Fatty Acid Composition in East African Sesame (Sesamum Indicum L.) Accessions Evaluated over 3 years[J]. Field Crops Res. 2006, 97, 254–260. DOI: 10.1016/j.fcr.2005.10.009.
  • Yin, W.; Washington, M.; Yang, X.; Lu, A.; Ma, X.; Rui, S.; Wang, X.; Zhao, R. Consumer Acceptability and Sensory Profiling of Sesame Oils Obtained from Different processes[J]. Grain Oil Sci. Technol. 2020. DOI: 10.1016/j.gaost.2020.04.001.
  • Alpaslan, M.; Hayta, M. Rheological and Sensory Properties of Pekmez (Grape Molasses)/tahin (Sesame Paste) blends[J]. J. Food Eng. 2002, 54, 89–93. DOI: 10.1016/s0260-8774(01)00197-2.
  • Zhang, L.; Li, Q.; Hong, H.; Luo, Y. Prevention of Protein Oxidation and Enhancement of Gel Properties of Silver Carp (Hypophthalmichthys Molitrix) Surimi by Addition of Protein Hydrolysates Derived from Surimi Processing by-products[J]. Food Chem. 2020, 316, 126343. DOI: 10.1016/j.foodchem.2020.126343.
  • Orruño, E.; Morgan, M. R. A. Purification and Characterisation of the 7S Globulin Storage Protein from Sesame (Sesamum Indicum L.) [J]. Food Chem. 2007, 100, 926–934. DOI: 10.1016/j.foodchem.2005.10.051.
  • Shu, Z.; Liu, L.; Geng, P.; Liu, J.; Shen, W.; Tu, M. Sesame Cake Hydrolysates Improved Spatial Learning and Memory of mice[J]. Food Biosci. 2019, 31, 100440. DOI: 10.1016/j.fbio.2019.100440.
  • FAO. Food and Agriculture Organization Corporate Statistical Database, 2020 FAO. Food and Agriculture Organization Corporate Statistical Database (2018). http://www.fao.org/faostat/en/#data/QC/ Accessed 14 May 2020.
  • Chatterjee, R.; Dey, T. K.; Ghosh, M.; Dhar, P. Enzymatic Modification of Sesame Seed Protein, Sourced from Waste Resource for Nutraceutical application[J]. Food Bioprod. Process. 2015, 94, 70–81. DOI: 10.1016/j.fbp.2015.01.007.
  • Boloorforooshan, M.; Markakis, P. Markakis Protein Supplementation of Navy Beans with sesame[J]. J. Food Sci. 1979, 44, 390–392. DOI: 10.1111/j.1365-2621.1979.tb03795.x.
  • Abeyrathne, E. D. N. S.; Huang, X.; Ahn, D. U. Antioxidant, Angiotensin-converting Enzyme Inhibitory Activity and Other Functional Properties of Egg White Proteins and Their Derived Peptides – A review[J]. Poultr. Sci. 2018, 97, 1462–1468. DOI: 10.3382/ps/pex399.
  • FitzGerald, R. J.; Cermeño, M.; Khalesi, M.; Kleekayai, T.; Amigo-Benavent, M. Application of in Silico Approaches for the Generation of Milk Protein-derived Bioactive peptides[J]. J. Funct. Foods. 2020, 64, 103636. DOI: 10.1016/j.jff.2019.103636.
  • Wang, G.; Zhou, G.; Ren, H.; Xu, Y.; Yang, Y.; Guo, L.; Liu, N. Peptide Biomarkers Identified by LC–MS in Processed Meats of Five Animal species[J]. J. Food Compost. Anal. 2018, 73, 47–54. DOI: 10.1016/j.jfca.2018.07.004.
  • Korhonen, H.; Pihlanto, A. Food-derived Bioactive Peptides-opportunities for Designing Future foods[J]. Curr. Pharm. Des. 2003, 9, 1297–1308. DOI: 10.2174/1381612033454892.
  • Hartmann, R.; Meisel, H. Food-derived Peptides with Biological Activity: From Research to Food applications[J]. Curr. Opin. Biotechnol. 2007, 18, 163–169. DOI: 10.1016/j.copbio.2007.01.013.
  • Wang, C.; Wang, C.; Li, B.; Li, H. Zn (II) Chelating with Peptides Found in Sesame Protein Hydrolysates: Identification of the Binding Sites of complexes[J]. Food Chem. 2014, 165, 594–602. DOI: 10.1016/j.foodchem.2014.05.146.
  • Yang, Q.; Cai, X.; Huang, M.; Wang, S. A Specific Peptide with Immunomodulatory Activity from Pseudostellaria Heterophylla and the Action mechanism[J]. J. Funct. Foods. 2020, 68, 103887. DOI: 10.1016/j.jff.2020.
  • Das, R.; Dutta, A.; Bhattacharjee, C. Preparation of Sesame Peptide and Evaluation of Antibacterial Activity on Typical pathogens[J]. Food Chem. 2012, 131, 1504–1509. DOI: 10.1016/j.foodchem.2011.09.136.
  • Wong, F.; Xiao, J.; Wang, S.; Ee, K.; Chai, T. Advances on the Antioxidant Peptides from Edible Plant sources[J]. Trends Food Sci. Technol. 2020, 99, 44–57. DOI: 10.1016/j.tifs.2020.02.012.
  • Yang, M.; Cui, G.; Zhao, M.; Wang, C.; Wang, L.; Liu, H.; Peng, S. The Effect of Complexation of Cu (II) with P6A Peptide and Its Analogs on Their Thrombolytic activities[J]. Int. J. Pharmaceutics. 2008, 362, 81–87. DOI: 10.1016/j.ijpharm.2008.06.014.
  • Jiang, X.; Pan, D.; Zhang, T.; Liu, C.; Zhang, J.; Su, M.; Wu, Z.; Zeng, X.; Sun, Y.; Guo, Y. Novel Milk Casein–derived Peptides Decrease Cholesterol Micellar Solubility and Cholesterol Intestinal Absorption in Caco-2 cells[J]. J. Dairy Sci. 2020, 103, 3924–3936. DOI: 10.3168/jds.2019-17586.
  • Zhao, Y.; Zhang, L.; Tao, J.; Chi, C.; Wang, B. Eight Antihypertensive Peptides from the Protein Hydrolysate of Antarctic Krill (Euphausia Superba): Isolation, Identification, and Activity Evaluation on Human Umbilical Vein Endothelial Cells (Huvecs) [J]. Food Res. Int. 2019, 121, 197–204. DOI: 10.1016/j.foodres.2019.03.035.
  • Aguilar-Toalá, J. E.; Hernández-Mendoza, A.; González-Córdova, A. F.; Vallejo-Cordoba, B.; Liceaga, A. M. Potential Role of Natural Bioactive Peptides for Development of Cosmeceutical Skin products[J]. Peptides. 2019, 122, 170170. DOI: 10.1016/j.peptides.2019.170170.
  • Tu, M.; Cheng, S.; Lu, W.; Du, M. Advancement and Prospects of Bioinformatics Analysis for Studying Bioactive Peptides from Food-derived Protein: Sequence, Structure, and functions[J]. Trends Anal. Chem. 2018, 105, 7–17. DOI: 10.1016/j.trac.2018.04.005.
  • Pang, G.; Chen, Q.; Hu, Z.; Xie, J. Bioactive Peptides: Absorption, Utilization and Functionality[J]. Chin. J. Food Sci. 2013, 9, 375–391.
  • Bayliss, W. M.; Starling, E.; Bayliss, W. M.; Starling, E. Preliminary Communication on the Causation of the So-called\”peripheral Reflex Secretion\” of the pancreas[J]. Lancet. 1902, 4099, 813. DOI: 10.1016/S0140-6736(01).
  • de Castro, R. J. S.; Sato, H. H. Biologically Active Peptides: Processes for Their Generation, Purification and Identification and Applications as Natural Additives in the Food and Pharmaceutical industries[J]. Food Res. Int. 2015, 74, 185–198. DOI: 10.1016/j.foodres.2015.05.013.
  • Pepe, G.; Sommella, E.; Ventre, G.; Scala, M. C.; Adesso, S.; Ostacolo, C.; Marzocco, S.; Novellino, E.; Campiglia, P. Antioxidant Peptides Released from Gastrointestinal Digestion of “Stracchino” Soft Cheese: Characterization, in Vitro Intestinal Protection and bioavailability[J]. J. Funct. Foods. 2016, 26, 494–505. DOI: 10.1016/j.jff.2016.08.021.
  • Benkhelifa, H.; Bengoa, C.; Larre, C.; Guibal, E.; Popineau, Y.; Legrand, J. Casein Hydrolysis by Immobilized Enzymes in a Torus reactor[J]. Process Biochem. 2005, 40, 461–467. DOI: 10.1016/j.procbio.2004.01.022.
  • Guo, Y.; Jiang, X.; Xiong, B.; Zhang, T.; Zeng, X.; Wu, Z.; Sun, Y.; Pan, D. Production and Transepithelial Transportation of angiotensin-I-converting Enzyme (Ace)-inhibitory Peptides from Whey Protein Hydrolyzed by Immobilized Lactobacillus Helveticus proteinase[J]. J. Dairy Sci. 2019, 102, 961–975. DOI: 10.3168/jds.2018-14899.
  • Li, F.; Chen, N.; Zhang, Z. The Optimum Choice of Enzyme and the Determination of the Hydrolysiscondition of Sesame peptide[J]. Chin. J. Sci. Technol. Cereals, Oils Foods. 2007, 2, 50–51. DOI: 10.16210/j.
  • Hou, L.; Liu, Y.; Wang, X.; Yu, X.; Li, Y.; Shen, Z. Optimization of the Preparation of Zinc (Zn2+) Chelating Peptides from Cold-pressed Sesame Protein hydrolysates[J]. Chin. J. Sci. Technol. Cereals Oils Foods. 2014, 6, 83–87. DOI: 10.16210/j.cnki.1007-7561.2014.06.008.
  • Zhao, S.; Zhang, Y.; Yang, C.; Wei, M.; Wang, T. Preparation of Peptide from Sesame Meal by Enzymatic hydrolysis[J]. China Oils Fats. 2012, 11, 28–31.
  • Xiao, Y.; Duan, Y.; Ding, H. Research on Hydrolyze Condition of Sesame Albumen Enzyme[J]. Chin. J. Acad. Period. Farm Products Process. 2009, 6, 59–63.
  • Lu, X.; Jiang, M.; Zhang, L.; Sun, Q.; Song, G.; Huang, J. Screening of Protease for Preparing Antioxidant Peptide from Sesame protein[J]. China Oils Fats. 2018, 11, 28–33.
  • Latif, S.; Anwar, F. Aqueous Enzymatic Sesame Oil and Protein extraction[J]. Food Chem. 2011, 125, 679–684. DOI: 10.1016/j.foodchem.2010.09.064.
  • Tang, Z.; Li, K.; Peng, M.; Li, Z. Study on the Preparation of Sesame Peptides by Enzymatic Hydrolysis of Sesame meal[J]. Chin. J. Grain Oil Technol. Econ. 2013, 2, 48–51.
  • Chen, Y.; Wang, W.; Shen, Z.; Yu, D. Study on the Compound Hydrolytic Process if Sesame proteins[J]. Chin. J. Food Res. Dev. 2006, 9, 17–20.
  • Wang, S.; Zhang, C.; Qi, B.; Sui, X.; Jiang, L.; Li, Y.; Wang, Z.; Feng, H.; Wang, R.; Zhang, Q. Immobilized Alcalase Alkaline Protease on the Magnetic Chitosan Nanoparticles Used for Soy Protein Isolate hydrolysis[J]. Eur. Food Res. Technol. 2014, 239, 1051–1059. DOI: 10.1007/s00217-014-2301-1.
  • Gao, M.; Miao, J.; Cao, Z.; Dong, Y.; Lu, Z. Study on Preparation of Complex Amino Acids by Hydrolyzing Sesame Protein Using Co-immobilized Double enzymes[J]. J. Yangzhou Univ. (Agricultural and Life Science Edition). 2008, 4, 95–98. DOI: 10.16872/j.cnki.1671-4652.2008.04.023.
  • Liang, Y.; Lu, X.; Huang, J.; Xie, X. Study on Preparation and Enzymatic Properties of Immobilized Alcalase Alkaline Protease Magnetic Chitosan microspheres[J]. Chin. J. Food Fermentat. Ind. 2014, 8, 66–71. DOI: 10.13995/j.cnki.11-1802/ts.2014.08.013.
  • Dong, Y.; Zheng, W. Study on the Extraction Technology of from Sesame Cake fermentation[J]. Chin. J. Food Res. Dev. 2007, 4, 20–23.
  • Chen, X.; Qin, W.; Ma, L.; Wang, Y. Study on the Production of Sesame Protein Peptides with Microorganism fermentation[J]. Chin. J. Sci. Technol. Food Ind. 2010, 6, 237–238+241. DOI: 10.13386/j.1002-0306.2010.06.003.
  • Qian, S.; Zhao, S.; Wei, M.; Xue, Z.; Wang, J. Optimization of Fermentation Conditions of Producing Polypeptide from Sesame Meal by Response Surface methodology[J]. China Oils Fats. 2013, 1, 20–23.
  • Yu, M.; He, S.; Tang, M.; Zhang, Z.; Zhu, Y.; Sun, H. Antioxidant Activity and Sensory Characteristics of Maillard Reaction Products Derived from Different Peptide Fractions of Soybean Meal hydrolysate[J]. Food Chem. 2018, 243, 249–257. DOI: 10.1016/j.foodchem.2017.09.139.
  • Makino, N.; Maeda, T.; Oyama, J.; Sasaki, M.; Higuchi, Y.; Mimori, K.; Shimizu, T. Antioxidant Therapy Attenuates Myocardial Telomerase Activity Reduction in Superoxide Dismutase-deficient mice[J]. J. Mol. Cell. Cardiol. 2011, 50, 670–677. DOI: 10.1016/j.yjmcc.2010.12.014.
  • Esfandi, R.; Walters, M. E.; Tsopmo, A. Antioxidant Properties and Potential Mechanisms of Hydrolyzed Proteins and Peptides from cereals[J]. Heliyon. 2019, 4, e01538. DOI: 10.1016/j.heliyon.2019.e01538.
  • Yang, Q.; Cai, X.; Yan, A.; Tian, Y.; Du, M.; Wang, S. A Specific Antioxidant Peptide: Its Properties in Controlling Oxidation and Possible Action mechanism[J]. Food Chem. 2020, 327, 126984. DOI: 10.1016/j.foodchem.2020.126984.
  • Shao, Y.; Dong, Y.; Yang, J. Preparation of Sesame Peptides and Their Antioxidant Activities[J]. Jiangsu J. Agric. Sci. 2009, 4, 900–904.
  • Ghribi, A. M.; Sila, A.; Przybylski, R.; Nedjar-Arroume, N.; Makhlouf, I.; Blecker, C.; Attia, H.; Dhulster, P.; Bougatef, A.; Besbes, S. Purification and Identification of Novel Antioxidant Peptides from Enzymatic Hydrolysate of Chickpea (Cicer Arietinum L.) Protein concentrate[J]. J. Funct. Foods. 2015, 12, 516–525. DOI: 10.1016/j.jff.2014.12.011.
  • Fazhi, X.; Huihui, P.; Yang, L.; Lumu, L.; Kun, Q.; Xioling, D. Separation and Purification of Small Peptides from Fermented Sesame Meal and Their Antioxidant Activities[J]. Protein Pept. Lett. 2014, 21, 966–974. DOI: 10.2174/0929866521666140411113021.
  • Li, G.; Ding, X. Protease Hydrolysis of Sesame Protein and Hydrolysate Antioxidation[J]. J. Chin. Cereal. Oils Assoc. 2006, 1, 104–108.
  • Chen, X.; Liu, A.; Chen, X.; Lan, J. Optimization of Enzymatic Preparation of Antioxidant Black Sesame Protein Hydrolysate[J]. Chin. J. Food Sci. 2010, 21, 85–88.
  • Zhao, Y.; Xu, C. Structure and Function of Angiotensin Converting Enzyme and Its Inhibitors[J]. Chin. J. Biotechnol. 2008, 24, 171–176. DOI: 10.13345/j.cjb.2008.02.027.
  • Campbell, D. J.;. The Renin–angiotensin and the Kallikrein–kinin systems[J]. Int. J. Biochem. Cell Biol. Renin-Angiotensin Syst. 2003, 35, 784–791. DOI: 10.1016/S1357-2725(02).
  • Erdös, E. G.;. The ACE and I: How ACE Inhibitors Came to be[J]. Faseb J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2006, 20, 1034–1038.
  • Yan, W.; Lin, G.; Zhang, R.; Liang, Z.; Wu, L.; Wu, W. Studies on Molecular Mechanism between ACE and Inhibitory Peptides in Different Bioactivities by 3D-QSAR and MD simulations[J]. J. Mol. Liq. 2020, 304, 112702. DOI: 10.1016/j.molliq.2020.112702.
  • Tu, M.; Wang, C.; Chen, C.; Zhang, R.; Liu, H.; Lu, W.; Jiang, L.; Du, M. Identification of a Novel ACE-inhibitory Peptide from Casein and Evaluation of the Inhibitory mechanisms[J]. Food Chem. 2018, 256, 98–104. DOI: 10.1016/j.foodchem.2018.02.107.
  • Wohlfart, P.; Wiemer, G. Interactions between the Renin-Angiotensin and the Kallikrein-Kinin System[M]Angiotensin. Vol. II. Springer Berlin Heidelberg. 2004, 359–373. https://doi.org/10.1007/978-3-642-18497-0_16
  • Nakano, D.; Ogura, K.; Miyakoshi, M.; Ishii, F.; Kawanishi, H.; Kurumazuka, D.; Kwak, C.; Ikemura, K.; Takaoka, M.; Moriguchi, S.; et al. Antihypertensive Effect of Angiotensin I-Converting Enzyme Inhibitory Peptides from a Sesame Protein Hydrolysate in Spontaneously Hypertensive Rats[J]. Biosci. Biotechnol. Biochem. 2006, 70, 1118–1126. DOI: 10.1271/bbb.70.1118.
  • Iino, T.; Ogura, K.; Asami, S. (2010). Angiotensin-converting enzyme inhibitory peptides.
  • Wang, Z.; Pei, J.; Yan, J.; Ma, H.; Wang, L.; Jiang, M. Effects of Ultrafiltration on ACE-Inhibitory and Antioxidant Activities of Sesame Protein Hydrolysates[J]. J. Chin. Cereal. Oils Assoc. 2015, 8, 58–63.
  • Costa, F. T.; Neto, S. M.; Bloch, C.; Franco, O. L. Susceptibility of Human Pathogenic Bacteria to Antimicrobial Peptides from Sesame Kernels[J]. Curr. Microbiol. 2007, 55, 162–166. DOI: 10.1007/s00284-007-0131-0.
  • Liu, B.; Chiang, P. Production of Hydrolysate with Antioxidative Activity and Functional Properties by Enzymatic Hydrolysis of Defatted Sesame (Sesamum Indicum L.) [J]. Int. J. Appl. Sci. Eng. 2008, 6, 73–83. DOI: 10.1023/B:JTAN.0000046110.24212.bb.
  • Barker, P. L.; Webb, R. R. Antiplatelet and Antithrombotic Agents: From Viper Venom Proteins, to Peptides and Peptidomimetics, to Small Organic molecules[J]. Adv. Med. Chem. 1995, 3, 57–111. DOI: 10.1016/S1067-5698(06)80004-0.
  • Harrison, L. M.; Córdova, J. L.; Cappello, M. Ancylostoma Caninum Anticoagulant Peptide-5: Immunolocalization and in Vitro Neutralization of a Major Hookworm anti-thrombotic[J]. Mol. Biochem. Parasitol. 2001, 115, 101–107. DOI: 10.1016/S0166-6851(01)00276-6.
  • Lee, J.; Park, J.; Yeom, J.; Han, E. H.; Lim, Y.-H. Inhibitory Effect of Bee Venom on Blood Coagulation via Anti-serine Protease activity[J]. J. Asia-Pacific Entomol. 2017, 20, 599–604. DOI: 10.1016/j.aspen.2017.03.023.
  • Wu, W.; Li, B.; Hou, H.; Zhang, H.; Zhao, X. Identification of Iron-chelating Peptides from Pacific Cod Skin Gelatin and the Possible Binding mode[J]. J. Funct. Foods. 2017, 35, 418–427. DOI: 10.1016/j.jff.2017.06.013.
  • Wang, C.; Li, B.; Ao, J. Separation and Identification of Zinc-chelating Peptides from Sesame Protein Hydrolysate Using IMAC-Zn2+ and LC–MS/MS[J]. Food Chem. 2012, 134, 1231–1238. DOI: 10.1016/j.foodchem.2012.02.204.