2,519
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Biosynthesis of silver nanoparticles using Tamarix articulata leaf extract: an effective approach for attenuation of oxidative stress mediated diseases

ORCID Icon, , ORCID Icon, , , , , & show all
Pages 677-701 | Received 30 Dec 2020, Accepted 05 Apr 2021, Published online: 19 Apr 2021

References

  • Govarthanan, M.; Selvankumar, T.; Manoharan, K.; Rathika, R.; Shanthi, K.; Lee, K. J.; Cho, M.; Kamala-Kannan, S.; Oh, B. T. Biosynthesis and Characterization of Silver Nanoparticles Using Panchakavya, an Indian Traditional Farming Formulating Agent. Int. J. Nanomed. 2014, 9, 1593–1599. DOI: https://doi.org/10.2147/IJN.S58932.
  • Lee, K.-J.; Park, S.-H.; Govarthanan, M.; Hwang, P.-H.; Seo, Y.-S.; Cho, M.; Lee, W.-H.; Lee, J.-Y.; Kamala-Kannan, S.; Oh, B.-T. Synthesis of Silver Nanoparticles Using Cow Milk and Their Antifungal Activity against Phytopathogens. Mater. Lett. 2013, 105, 128–131. DOI: https://doi.org/10.1016/j.matlet.2013.04.076.
  • Helmy, A.; El-Shazly, M.; Seleem, A.; Abdelmohsen, U.; Alaraby Salem, M.; Samir, A.; Rabeh, M.; Elshamy, A.; Singab, A. N. B. The Synergistic Effect of Biosynthesized Silver Nanoparticles from a combined Extract of Parsley, Corn Silk, and Gum Arabic: In Vivo Antioxidant, Anti-inflammatory and Antimicrobial Activities. Mater. Res. Express. 2020, 7, 025002.
  • Khandel, P.; Shahi, S. K.; Kanwar, L.; Yadaw, R. K.; Soni, D. K. Biochemical Profiling of Microbes Inhibiting Silver Nanoparticles Using Symbiotic Organisms. Int. J. Nano. Dimens. 2018, 9, 273–285.
  • Deyá, C.; Bellotti, N. Biosynthesized Silver Nanoparticles to Control Fungal Infections in Indoor Environments. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2017, 8, 8025005.
  • Johnson, P.; Krishnan, V.; Loganathan, C.; Govindhan, K.; Raji, V.; Sakayanathan, P.; Vijayan, S.; Sathishkumar, P.; Palvannan, T. Rapid Biosynthesis of Bauhiniavariegata Flower Extract-mediated Silver Nanoparticles: An Effective Antioxidant Scavenger and α-amylase Inhibitor. Artif. Cells Nanomed and Biotechnol. 2018, 46, 1488–1494. DOI: https://doi.org/10.1080/21691401.2017.1374283.
  • Antony, E.; Sathiavelu, M.; Arunachalam, S. Synthesis of Silver Nanoparticles from the Medicinal Plant Bauhinia Acuminata and Biophytum Sensitivum–a Comparative Study of Its Biological Activities with Plant Extract. Int. J. App. Pharm. 2017, 9, 22–29. DOI: https://doi.org/10.22159/ijap.2017v9i1.16277.
  • Aravinthan, A.; Govarthanan, M.; Selvam, K.; Praburaman, L.; Selvankumar, T.; Balamurugan, R.; Kamala-Kannan, S.; Kim, J. Sunroot Mediated Synthesis and Characterization of Silver Nanoparticles and Evaluation of Its Antibacterial and Rat Splenocyte Cytotoxic Effects. Internat. J. Nanomed. 1977-1983, 2015(10).
  • Govarthanan, M.; Seo, Y.-S.; Lee, K.-J.; Jung, I.-B.; Ju, H.-J.; Kim, J. S.; Cho, M.; Kamala-Kannan, S.; Oh, B.-T. Low-cost and Eco-friendly Synthesis of Silver Nanoparticles Using Coconut (Cocos Nucifera) Oil Cake Extract and Its Antibacterial Activity. Artif. Cells Nanomed. Biotechnol. 2016, 44(44), 1878–1882. DOI: https://doi.org/10.3109/21691401.2015.1111230.
  • Rajawat, S.; Qureshi, M. S. Comparative Study on Bactericidal Effect of Silver Nanoparticles, Synthesized Using Green Technology, in Combination with Antibiotics on Salmonella Typhi. J. Biomater. Nanobiotechnol. 2012, 3, 480–485. DOI: https://doi.org/10.4236/jbnb.2012.34049.
  • Muthusamy, G.; Thangasamy, S.; Raja, M.; Chinnappan, S.; Kandasamy, S. Biosynthesis of Silver Nanoparticles from Spirulina Microalgae and Its Antibacterial Activity. Environ. Sci. Pollut. Res. 2017, 24, 19459–19464. DOI: https://doi.org/10.1007/s11356-017-9772-0.
  • Mythili, R.; Selvankumar, T.; Kamala-Kannan, S.; Sudhakar, C.; Ameen, F.; Al-Sabri, A.; Selvam, K.; Govarthanan, M.; Kim, H. S. Utilization of Market Vegetable Waste for Silver Nanoparticle Synthesis and Its Antibacterial Activity. Mater. Lett. 2018, 225, 101–104. DOI: https://doi.org/10.1016/j.matlet.2018.04.111.
  • Ameen, F.; AlYahya, S.; Govarthanan, M.; ALjahdali, N.; Al-Enazi, N.; Alsamhary, K.; Alshehri, W. A.; Alwakeel, S. S.; Alharbi, S. A. Soil Bacteria Cupriavidus Sp. Mediates the Extracellular Synthesis of Antibacterial Silver Nanoparticles. J. Mol. Struct. 2020, 1202, 127233. DOI: https://doi.org/10.1016/j.molstruc.2019.127233.
  • Aslam, M.; Ahmad, M. Alhagi Maurorum and Tamarix Aphylla – two Medicinal Weeds Mentioned in Holy Quran and Ahadith and Their Ethnomedicinal Uses in District Rajhanpur of Pakistan. Univers. J. Pharm. Res. 2016, 1. DOI: https://doi.org/10.22270/ujpr.v1i1.RW5.
  • Rahmani, A. H.; Al Zohairy, M. A.; Aly, S. M.; Khan, M. A. Curcumin: A Potential Candidate in Prevention of Cancer via Modulation of Molecular Pathways. Biomed. Res. Int. 2014, 2014, 761608. DOI: https://doi.org/10.1155/2014/761608.
  • Rahmani, A. H.; AlSahli, M. A.; Aly, S. M.; Khan, M. A.; Aldebasi, Y. H. Role of Curcumin in Disease Prevention and Treatment. Adv. Biomed. Res. 2018, 7, 38. DOI: https://doi.org/10.4103/abr.abr_147_16.
  • Rahmani, A. H.; Allemailem, K. S.; Aly, S. M.; Khan, M. A. Implications of Green Tea and Its Constituents in the Prevention of Cancer via the Modulation of Cell Signalling Pathway. Biomed. Res. Int. 2015, 12. Article ID 925640. DOI: https://doi.org/10.1155/2015/925640.
  • Alnuqyadan, A.; Rah, B. Comparative Assessment of Biological Activities of Different Parts of Halophytic Plant Tamarix Articulata (T. Articulata) Growing in Saudi Arabia. Saudi J. Biol. Sci. 2020, 27(10), 2586–2592. DOI: https://doi.org/10.1016/j.sjbs.2020.05.028.
  • Alnuqyadan, A.; Rah, B. A. Tamarix Articulata (T. Articulata) - an Important Halophytic Medicinal Plant with Potential Pharmacological Properties. Curr. Pharm. Biotechnol. 2019, 20(4). DOI: https://doi.org/10.2174/1389201020666190318120103.
  • Marwat, S. K.; Khan, M. A.; Khan, M. A. Fazal-ur-Rehman; Ahmad, M.; Zafar, M. Salvadora Persica, Tamarix Aphylla and Zizyphus Mauritiana – three Woody Plant Species Mentioned in Holy Quran and Ahadith and Their Ethnobotanical Uses in North Western Part (D.I. Khan) of Pakistan. Ethnobot. Leaflets. 2008, 2, 1013–1021.
  • Reginato, M. A.; Castagna, A.; Furlán, A.; Castro, S.; Ranieri, A.; Luna, V. Physiological Responses of a Halophytic Shrub to Salt Stress by Na2SO4 and NaCl: Oxidative Damage and the Role of Polyphenols in Antioxidant Protection. AoB Plants. 2014, 6, plu042. DOI: https://doi.org/10.1093/aobpla/plu042.
  • Anwar, S.; Almatroudi, A.; Allemailem, K. S.; Jacob Joseph, R.; Khan, A. A.; Rahmani, A. H. Protective Effects of Ginger Extract against Glycation and Oxidative Stress-Induced Health Complications: An in Vitro Study. Processes. 2020, 8, 468. DOI: https://doi.org/10.3390/pr8040468.
  • Khan, M. A.; Anwar, S.; Aljarbou, A. N.; Al-Orainy, M.; Aldebasi, Y. H.; Islam, S.; Younus, H. Protective Effect of Thymoquinone on Glucose Ormethylglyoxal-induced Glycation of Superoxidedismutase. Int. J. Biol. Macromol. 2014, 65, 16–20. DOI: https://doi.org/10.1016/j.ijbiomac.2014.01.001.
  • Anwar, S.; Khan, M. A.; Sadaf, A.; Younus, H. A Structural Study on the Protection of Glycation of Superoxide Dismutase by Thymoquinone. Int. J. Biol. Macromol. 2014, 69, 476–481. DOI: https://doi.org/10.1016/j.ijbiomac.2014.06.003.
  • Odebiyi, O. O.; Sofowora, E. A. Phytochemical Screening of Nigerian Medicinal Plants. Litoydia. 1979, 41(3), 234–246.
  • Taie, H. A. A.; Salama, Z. A. E. R.; Radwan, S. Potential Activity of Basil Plants as a Source of Antioxidants and Anticancer Agents as Affected by Organic and Bio-organic Fertilization. Not. Bot. Horti. Agrobo. 2010, 38, 119127.
  • Qais, F. A.; Shafiq, A.; Khan, M. H.; Ahmad, I.; Alsalme, A.; Ahmad, I. Antibacterial Effect of Silver Nanoparticles Synthesized Using Murraya Koenigii (L.) Against Multidrug-Resistant Pathogens. Bioinorg. Chem. Appl. 2019, 2019, 1–11. |Article ID 4649506. DOI: https://doi.org/10.1155/2019/4649506.
  • Almatroodi, S. A.; Anwar, S.; Almatroudi, A.; Khan, A. A.; Alrumaihi, F.; Alsahli, M. A.; Rahmani, A. H. Hepatoprotective Effects of Garlic Extract against Carbon Tetrachloride (Ccl4)-induced Liver Injury via Modulation of Antioxidant, Anti-Inflammatory Activities and Hepatocyte Architecture. Appl. Sci. 2020, 10, 6200. DOI: https://doi.org/10.3390/app10186200.
  • Alsahli, M. A.; Almatroodi, S. A.; Almatroudi, A.; Khan, A. A.; Anwar, S.; Almutary, A. G.; Alrumaihi, F.; Rahmani, A. H. 6-Gingerol, a Major Ingredient of Ginger Attenuates Diethylnitrosamine-Induced Liver Injury in Rats through the Modulation of Oxidative Stress and Anti-Inflammatory Activity. Mediators Inflamm. 2021, 2021, 1–17. Article ID 6661937. DOI: https://doi.org/10.1155/2021/6661937.
  • Mizushima, Y.; Kobayashi, M. Interaction of Anti‐inflammatory Drugs with Serum Proteins, Especially with Some Biologically Active Proteins. J. Pharma. Pharmacol. 1968, 20, 169‐173. DOI: https://doi.org/10.1111/j.2042-7158.1968.tb09718.x.
  • Oyedepo, O. O.; Femurewa, A. J. Anti‐protease and Membrane Stabilizing Activities of Extracts of Fagra Zanthoxiloides, Olax Subscorpioides and Tetrapleura Tetraptera. Int. J. Pharmacong. 1995, 33, 65‐69.
  • Chanda, S.; Juvekar, A. In Vitro Anti-inflammatory Activity of Syringic Acid. Int. J. Pharm. Pharm. Sci. 2019, 11, 71–73.
  • Govindappaa, M.; Hemashekhar, B.; Arthikala, M. K.; Ravishankar Raid, V.; Ramachandra, Y. L. Characterization, Antibacterial, Antioxidant, Antidiabetic, Anti-inflammatory and Antityrosinase Activity of Green Synthesized Silver Nanoparticles Using Calophyllum Tomentosum Leaves Extract. Results. Phys. 2018, 9, 400–408. DOI: https://doi.org/10.1016/j.rinp.2018.02.049.
  • Brownlee, M.; Vlassara, H.; Kooney, A.; Ulrich, P.; Cerami, A. Aminoguanidine Prevents Diabetes Induced Arterial Wall Protein Cross-linking. Science. 1986(232), 1629-1632.
  • Younus, H.; Anwar, S. Prevention of Non-enzymatic Glycosylation (Glycation): Implication in the Treatment of Diabetic Complication. Int. J. Health. Sci. (Qassim). 2016, 10, 261–277.
  • Matsuura, N.; Aradate, T.; Sasaki, C.; Kojima, H.; Ohara, M.; Hasegawa, J.; Ubukata, M. Screening System for the Maillard Reaction. Inhibitor from Natural Product Extracts. J. Health Sci. 2002, 48(6), 520–526. DOI: https://doi.org/10.1248/jhs.48.520.
  • Kumar, D.; Ali, A. Antiglycation and Antiaggregation Potential of Thymoquinone. Nat. Volatiles Essent. Oils. 2019, 6(1), 25–33.
  • Klunk, W. E.; Jacob, R. F.; Mason, R. P. Quantifying Amyloid Beta-peptide (Abeta) Aggregation Using the Congo red-Abeta (Cr-abeta) Spectrophotometric Assay. Anal. Biochem. 1999, 266, 66–76. DOI: https://doi.org/10.1006/abio.1998.2933.
  • Shankar, S. S.; Rai, A.; Ahmad, A.; Sastry, M. Rapid Synthesis of Au, Ag, and Bimetallic Au Core Ag Shell Nanoparticles usingNeem (Azadirachta Indica) Leaf Broth. J. Colloid Interface Sci. 2004, 275, 496–502. DOI: https://doi.org/10.1016/j.jcis.2004.03.003.
  • Hoshyar, N.; Gray, S.; Han, H.; Bao, G. The Effect of Nanoparticle Size on in Vivo Pharmacokinetics and Cellular Interaction. Nanomedicine (Lond). 2016, 11(6), 673–692. DOI: https://doi.org/10.2217/nnm.16.5.
  • Nabavi, S. M.; Ebrahimzadeh, M. A.; Nabavi, S. F.; Hamidinia, A.; Bekhradnia, A. R. Determination of Antioxidant Activity, Phenol and Flavonoids Content of Parrotia Persica Mey. Pharmacology Online. 2008, 2, 560–567.
  • Nabavi, S. M.; Ebrahimzadeh, M. A.; Nabavi, S. F.; Jafari, M. Free Radical Scavenging Activity and Antioxidant Capacity of Eryngium Caucasicum Trautv and Froripia Subpinnata. Pharmacology Online. 2008, 3, 19–25.
  • Chatterjee, P.; Chandra, S.; Dey, P.; Bhattacharya, S. Evaluation of Anti-inflammatory Effects of Green Tea and Black Tea: A Comparative in Vitro Study. J. Adv. Pharm. Technol. Res. 2012, 3(2), 136–138. DOI: https://doi.org/10.4103/2231-4040.97298.
  • Das, S. N.; Chatterjee, S. Long Term Toxicity Study of ART‐400. Indian Indg. Med. 1995, 16(2), 117‐123.
  • Leelaprakash, G.; Mohan Dass, S. In Vitro Anti-Inflammatory Activity of Methanol Extract of Enicostemma Axillare. Int. J. Drug Dev. Res. 2011, 3(3), 189–196.
  • Ajandouz, E. H.; Tchiakpe, L. S.; Ore, F. D.; Benajiba, A.; Puigserver, A. Effect of pH on Caramelization and Maillard Reaction Kinetics in Fructose-lysine Model Systems. J. Food Sci. 2011, 66, 926–931. DOI: https://doi.org/10.1111/j.1365-2621.2001.tb08213.x.
  • Das, P.; Ghosal, K.; Jana, N. K.; Mukherjee, A.; Basak, P. Green Synthesis and Characterization of Silver Nanoparticles Using Belladonna Mother Tincture and Its Efficacy as a Potential Antibacterial and Anti-inflammatory Agent. Mater. Chem. Phys. 2019, 228, 310–317. DOI: https://doi.org/10.1016/j.matchemphys.2019.02.064.
  • Sri Kumaran, N.; Vijayaraj, R. Biosynthesis of Silver Nanoparticles Using Abutilon Indicum (Link): An Investigation of Anti-inflammatory and Antioxidant Potential against Carrageen Induced Paw Edema in Rats. Asian J. Pharm. Sci. 2017, 11(2), 92.
  • Petit, C.; Lixon, P.; Pileni, M. P. In Situ Synthesis of Silver Nanocluster in AOT Reverse Micelles. J. Phys. Chem. 1993, 97, 12974. DOI: https://doi.org/10.1021/j100151a054.
  • Kong, H.; Jang, J. One-step Fabrication of Silver Nanoparticle Embedded Polymer Nanofibers by Radical-mediated Dispersion Polymerization. Chem. Commun. 2006, 3010–3012. DOI: https://doi.org/10.1039/b605286j.
  • Das, G.; Patra, J. K.; Basavegowda, N.; Vishnuprasad, C. N.; Shin, H. S. Comparative Study on Antidiabetic, Cytotoxicity, Antioxidant and Antibacterial Properties of Biosynthesized Silver Nanoparticles Using Outer Peels of Two Varieties of Ipomoea Batatas (L.) Lam. Int. J. Nanomed. 2019, 14, 4741–4754. DOI: https://doi.org/10.2147/IJN.S210517.
  • Anwar, S.; Almatroudi, A.; Alsahli, M. A.; Khan, M. A.; Khan, A. A.; Rahmani, A. H. Natural Products: Implication in Cancer Prevention and Treatment through Modulating Various Biological Activities. Anticancer Agents Med. Chem. 2020, 20(17), 2025–2040. DOI: https://doi.org/10.2174/1871520620666200705220307.
  • Gupta, S.; Kohli, S.; Dwivedi, S. In-Vitro Anti-inflammatory Activity of Sarcostemma Acidum Wight. & Arn. Indian Herb by Human Red Blood Cell Membrane Stabilization Method. I. J. P. T. P. 2011, 2(4), 184–188.
  • Vijayakumar, S.; Divya, M.; Vaseeharan, B.; Chen, C.; Biruntha, M.; Silva, P.; Durán‑Lara, E. F.; Shreema, K.; Ranjan, S.; Dasgupta, N. Biological Compound Capping of Silver Nanoparticle with the Seed Extracts of Blackcumin (Nigella Sativa): A Potential Antibacterial, Antidiabetic, Anti-inflammatory, and Antioxidant. J. Inorg. Organomet. Polym. Mater. 2020, 31, 624–635. DOI: https://doi.org/10.1007/s10904-020-01713-4.
  • Anwar, S.; Younus, H. Antiglycating Potential of Ellagic Acid against Glucose and Methylglyoxal-induced Glycation of Superoxide Dismutase. J. P. P. 2017, 8, 1–12.
  • Younus, H.; Anwar, S. Antiglycating Activity of Aloe Vera Gel Extract and Its Active Component Aloin. Proteins Proteom. 2018, 9, 115–125.
  • Anwar, S.; Younus, H. Inhibitory Effect of Alliinfrom Allium Sativum on the Glycation of Superoxide Dismutase. Int. J. Biol. Macromol. 2017, 103, 182–193. DOI: https://doi.org/10.1016/j.ijbiomac.2017.05.043.
  • Miroliaei, M.; Aminjafari, A.; Ślusarczyk, S.; Nawrot-Hadzik, I.; Rahimmalek, M.; Matkowski, A. Inhibition of Glycation-induced Cytotoxicity, Protein Glycation, and Activity of Proteolytic Enzymes by Extract from Perovskia Atriplicifolia Roots. Pharmacogn. Mag. 2017, 13(Suppl 3), S676–S683. DOI: https://doi.org/10.4103/pm.pm_559_16.
  • Vijaykumar, M.; Priya, K.; Nancy, F. T.; Noorlidah, A.; Ahmed, A. B. A. Biosynthesis, Characterization, and Antibacterial Effect of Plant-mediated Silver Nanoparticles Using Artemisia Nilagirica. Ind. Crops Prod. 2013, 41, 215–240.
  • Ibrahim, H. M. M.;. Green Synthesis and Characterization of Silver nanoparticles Using Banana Peel Extract and Their Antimicrobial Activity against Representative Microorganisms. J. Radiat. Res. Appl. Sc. 2015, 8, 265–275. DOI: https://doi.org/10.1016/j.jrras.2015.01.007.
  • Bonifácio, B. V.; Da Silva, P. B. Nanotechnology-based Drug Delivery systems and Herbal Medicines: A Review. Int. J. Nanomedicine. 2014, 9, 1–15.