3,757
Views
13
CrossRef citations to date
0
Altmetric
Original Article

Progress on research and development of goji berry drying: a review

, , &
Pages 435-449 | Received 04 Oct 2021, Accepted 19 Feb 2022, Published online: 07 Mar 2022

References

  • Zhong, Y.; Shahidi, F.; Naczk, M. Phytochemicals and Health Benefits of Goji Berries. Dried Fruits Phytochem Heal Eff. 2013, 133–144. DOI: 10.1002/9781118464663.ch6.
  • Bucheli, P.; Gao, Q.; Redgwell, R.; Vidal, K.; Zhang, W. Biomolecular and Clinical Aspects of Chinese Wolfberry. Herb Med Biomol Clin Asp. 2011, 1–17. DOI: 10.1201/b10787-15.
  • Liu, Y.; Wang, Z.; Zhang, J., and Evidence, C. Dietary Chinese Herbs. Springer, Vienna. 2015, 425–430. DOI: 10.1007/978-3-211-99448-1_48.
  • Wang, C. C.; Chang, S. C.; Inbaraj, B. S.; Chen, B. H. Isolation of Carotenoids, Flavonoids and Polysaccharides from Lycium Barbarum L. And Evaluation of Antioxidant Activity. Food Chem. 2010, 120, 184–192. DOI: 10.1016/j.foodchem.2009.10.005.
  • Raymond Chuen-Chung SK-F, C. 2015, Springer Netherlands: Lycium Barbarum and Human Health.
  • Inbaraj, B. S.; Lu, H.; Hung, C. F.; Wu, W.B.; Lin, C.L.; Chen, B.H. Determination of Carotenoids and Their Esters in Fruits of Lycium Barbarum Linnaeus by HPLC-DAD-APCI-MS. J. Pharm. Biomed. Anal. 2008, 47, 812–818. DOI: 10.1016/j.jpba.2008.04.001.
  • Kulczyński, B.; Gramza-Michałowska, A. Goji Berry (Lycium Barbarum): Composition and Health Effects - A Review. Polish J. Food Nutr. Sci. 2016, 66, 67–75. DOI: 10.1515/pjfns-2015-0040.
  • Adams, M.; Wiedenmann, M.; Tittel, G.; Bauer, R. HPLC-MS Trace Analysis of Atropine in Lycium Barbarum Berries. Phytochem. Anal. 2006, 17, 279–283. DOI: 10.1002/pca.915.
  • Yao, X.; Peng, Y.; Xu, L. J.; Li, L.; Wu, Q.L.; Xiao, P.G. Phytochemical and Biological Studies of Lycium Medicinal Plants. Chem. Biodivers. 2011, 8, 976–1010.
  • Hiserodt, R. D.; Adedeji, J.; John, T. V.; Dewis, M. L. Identification of Monomenthyl Succinate, Monomenthyl Glutarate, and Dimenthyl Glutarate in Nature by High Performance Liquid Chromatography-tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry. 2004, 52(11), 3536–3541. DOI: 10.1021/jf049798m.
  • Mikulic-Petkovsek, M.; Schmitzer, V.; Slatnar, A.; Stampar, F.; Veberic, R. Composition of Sugars, Organic Acids, and Total Phenolics in 25 Wild or Cultivated Berry Species. J. Food Sci. 2012, 77, DOI: 10.1111/j.1750-3841.2012.02896.x.
  • Cui, G.; Jing, L.; Feng, Q.; Xiao, Y.; Putheti, R. Anti-hyperglycemic Activity of a Polysaccharide Fraction from Lycium Barbarum. African J Biomed Res. 2010, 13, 55–59.
  • Pai, P. G.; Habeeba, P. U.; Ullal, S.; Ahsan; S.P.; Ramya. Evaluation of Hypolipidemic Effects of Lycium Barbarum (Goji Berry) in a Murine Model. J Nat Remedies. 2013, 13, 4–8. DOI: 10.18311/jnr/2013/110.
  • Tang, W. M.; Chan, E.; Kwok, C. Y.; Lee, Y.; Wu, J.H.; Wan, C.W.; Chan, R.Y.K.; Yu, P.H.Fu.; Chan, S.W.A. A Review of the Anticancer and Immunomodulatory Effects of Lycium Barbarum Fruit. Inflammopharmacology. 2012, 20, 307–314. DOI: 10.1007/s10787-011-0107-3.
  • Ni, T.; Wei, G.; Yin, X.; Liu, X.; Liu, D. Neuroprotective Effect of Lycium Barbarum on Retina of Royal College of Surgeons (RCS) Rats. Folia Neuropathol 2013, 51, 158–163. DOI: 10.5114/fn.2013.35959.
  • Luo, Q.; Cai, Y.; Yan, J.; Sun, M.; Corke, H. Hypoglycemic and Hypolipidemic Effects and Antioxidant Activity of Fruit Extracts from Lycium Barbarum. Life Sci. 2004, 76, 137–149. DOI: 10.1016/j.lfs.2004.04.056.
  • Yin, G.; Dang, Y. Optimization of Extraction Technology of the Lycium Barbarum Polysaccharides by Box-Behnken Statistical Design. Carbohydr. Polym. 2008, 74, 603–610. DOI: 10.1016/j.carbpol.2008.04.025.
  • Fan, X. J.; Zhang, B.; Yan, H.; Feng, J. T.; Ma, Z. Q., and Zhang, X. Effect of lotus leaf extract incorporated composite coating on the postharvest quality of fresh goji (Lycium barbarum L.) fruit. Postharvest Biology and Technology. 2019, 148, 132–140. DOI: 10.1016/j.postharvbio.2018.10.020.
  • Lewicki, P. P.;. Design of Hot Air Drying for Better Foods. Trends Food Sci. Technol. 2006, 17, 153–163.
  • Esmaiili, M.; Sotudeh-Gharebagh, R.; Cronin, K.; Mousav, M.; Rezazadeh, M. Grape Drying: A Review. Food Rev. Int. 2007, 23, 257–280. DOI: 10.1080/87559120701418335.
  • Duizer, L.;. A Review of Acoustic Research for Studying the Sensory Perception of Crisp, Crunchy and Crackly Textures. Trends Food Sci. Technol. 2001, 12, 17–24.
  • Cohen, J. S.; Yang, T. C. S. Progress in Food Dehydration. Trends Food Sci. Technol. 1995, 6, 20–25.
  • Nep, E. I.; Conway, B. R. Physicochemical Characterization of Grewia Polysaccharide Gum: Effect of Drying Method. Carbohydr. Polym. 2011, 84, 446–453. DOI: 10.1016/j.carbpol.2010.12.005.
  • Albanese, D.; Cinquanta, L.; Cuccurullo, G.; Di Matteo, M. Effects of Microwave and Hot-air Drying Methods on Colour, β-carotene and Radical Scavenging Activity of Apricots. Int. J. Food Sci. Technol. 2013, 48, 1327–1333. DOI: 10.1111/ijfs.12095.
  • Carnés, J.; De Larramendi, C. H.; Ferrer, A.; Huertas, A.J.; López-Matas, M.A.; Pagán, J.A.; Navarro, L.A.; García-Abujeta, J.L.; Vicario, S.; Pe?A, M. Recently Introduced Foods as New Allergenic Sources: Sensitisation to Goji Berries (Lycium Barbarum). Food Chem. 2013, 137, 130–135. DOI: 10.1016/j.foodchem.2012.10.005.
  • Wu, Z.; Li, W.; Zhao, L.; Shi, J.; Liu, Q. Drying Characteristics and Product Quality of Lycium Barbarum under Stages-varying Temperatures Drying Process. Nongye Gongcheng Xuebao/Transactions Chinese Soc Agric Eng 2015, 31, 287–293. DOI: 10.11975/j.1002-6819.2015.11.041.
  • Carranza-Concha, J.; Benlloch, M.; Camacho, M. M.; Martínez-Navarrete, N. Effects of Drying and Pretreatment on the Nutritional and Functional Quality of Raisins. Food Bioprod. Process. 2012, 90, 243–248. DOI: 10.1016/j.fbp.2011.04.002.
  • Zhao, Q.; Dong, B.; Chen, J.; Zhao, B.; Wang, X.; Zha, S.; Wang, Y.; Zhang, J.; Wang, Y. Effect of Drying Methods on Physicochemical Properties and Antioxidant Activities of Wolfberry (Lycium Barbarum) Polysaccharide. Carbohydr. Polym. 2015, 127, 176–181. DOI: 10.1016/j.carbpol.2015.03.041.
  • Yang, M.; Ding, C. Electrohydrodynamic (EHD) Drying of the Chinese Wolfberry Fruits. Springerplus. 2016, 5, 1–20. DOI: 10.1186/s40064-016-2546-1.
  • Lecas, M.; Brillouet, J.-M. Cell Wall Composition of Grape Berry Skins. Phytochemistry. 1994, 35, 1241–1243. DOI: 10.1016/S0031-9422(00)94828-3.
  • Karathanos, V. T.; Belessiotis, V. G. Sun and Artificial Air Drying Kinetics of Some Agricultural Products. J. Food Eng. 1997, 31, 35–46. DOI: 10.1016/S0260-8774(96)00050-7.
  • Adiletta, G.; Rizvi Alam, M.; Cinquanta, L.; Russo, P.; Matteo, M.D. Effect of Abrasive Pretreatment on Hot Dried Goji Berry. Chem. Eng. Trans. 2015, 44, x–x DOI: 10.3303/CET1544022.
  • Ai, Y.; Jing, D. U.; Chun, L. I.; Li, W. Study on Component and Microscopic Structure of Wax of Lycium Barbarum L. 1976, 112–114. doi:10.13386/j.1002-0306.2011.12.035
  • Kök SÇ, D.;. 2004 Determination of Characteristics of Grape Berry Skin in Some Table Grape Cultivars (VVinifera L.), 141–146
  • Di Matteo, M.; Cinquanta, L.; Galiero, G.; Crescitelli, S. Effect of a Novel Physical Pretreatment Process on the Drying Kinetics of Seedless Grapes. J. Food Eng. 2000, 46, 83–89. DOI: 10.1016/S0260-8774(00)00071-6.
  • Cinquanta, L.; Di Matteo, M.; Esti, M. Physical Pre-treatment of Plums (Prunus Domestica). Part 2. Effect on the Quality Characteristics of Different Prune Cultivars. Food Chem. 2002, 79, 233–238. DOI: 10.1016/S0308-8146(02)00138-3.
  • Femenia, A.; Sénchez, E. S.; Simal, S.; Rosselló, C. Effects of Drying Pretreatments on the Cell Wall Composition of Grape Tissues. J. Agric. Food Chem. 1998, 46, 271–276. DOI: 10.1021/jf9705025.
  • Rocha, T.; Lebert, A.; Marty-Audouin, C. Effect of Pretreatments and Drying Conditions on Drying Rate and Colour Retention of Basil (Ocimum Basilicum). LWT - Food Sci. Technol. 1993, 26, 456–463. DOI: 10.1006/fstl.1993.1090.
  • Toĝrul, I. T.; Pehlivan, D. Modelling of Thin Layer Drying Kinetics of Some Fruits under Open-air Sun Drying Process. J. Food Eng. 2004, 65, 413–425. DOI: 10.1016/j.jfoodeng.2004.02.001.
  • Amagase, H.; Farnsworth, N. R. A Review of Botanical Characteristics, Phytochemistry, Clinical Relevance in Efficacy and Safety of Lycium Barbarum Fruit (Goji). Food Res. Int. 2011, 44, 1702–1717. DOI: 10.1016/j.foodres.2011.03.027.
  • Liu, M.; Wang, S., and Li, K. Study of the Solar Energy Drying Device and Its Application in Traditional Chinese Medicine in Drying. Int J Clin Med. 2015, 6, 271–280.
  • Guowei, R.; Huiyuan, Z.; Guo Xuexia, Y. S. Design and Testing of Solar Dryer for Chinese Wolfberry Using Temperature and Humidity by Stages Changed Hot-air Method. Packag Food Mach. 2015, 33(6), 34–38.
  • Song, M.; Guo Xuedong, G. Z. S. The Application of Solar Drying in Processing Chinese Wolfberry. Agric Equip Technol. 2008, 34(5), 27–29.
  • Doymaz, I.;. Pretreatment Effect on Sun Drying of Mulberry Fruits (Morus Alba L.). J. Food Eng. 2004, 65, 205–209. DOI: 10.1016/j.jfoodeng.2004.01.016.
  • Sagar, V. R.; Suresh Kumar, P. Recent Advances in Drying and Dehydration of Fruits and Vegetables: A Review. J. Food Sci. Technol. 2010, 47, 15–26.
  • Ratti, C.;. Hot Air and Freeze-drying of High-value Foods: A Review. J. Food Eng. 2001, 49, 311–319. DOI: 10.1016/S0260-8774(00)00228-4.
  • Varnalis, A. I.; Brennan, J. G.; MacDougall, D. B. Proposed Mechanism of High Temperature Puffing of Potato. Part II. Influence of Blanching and Initial Drying on the Permeability of the Partially Dried Layer to Water Vapour. J. Food Eng. 2001, 48, 369–378. DOI: 10.1016/S0260-8774(00)00198-9.
  • Qinghua, J.; Shijie, Z.; Jingfu, C.; Zhicheng, X. Hot Air Drying Characteristics of Chinese Wolfberry. J Agric Mech Res. 2010, 6, 153–157. DOI: 10.13427/j.cnki.njyi.2010.06.036.
  • Maskan, M.;. Drying, Shrinkage and Rehydration Characteristics of Kiwifruits during Hot Air and Microwave Drying. J. Food Eng. 2001, 48, 177–182. DOI: 10.1016/S0260-8774(00)00155-2.
  • Feng, H.; Yin, Y.; Tang, J. Microwave Drying of Food and Agricultural Materials: Basics and Heat and Mass Transfer Modeling. Food Eng. Rev. 2012, 4, 89–106.
  • Maskan, M.;. Kinetics of Colour Change of Kiwifruits during Hot Air and Microwave Drying. J. Food Eng. 2001, 48, 169–175. DOI: 10.1016/S0260-8774(00)00154-0.
  • Maskan, M.;. Microwave/air and Microwave (R) Nish Drying of Banana. J. Food Eng. 2000, 44, 71–78.
  • Prabhanjan, D. G.; Ramaswamy, H. S.; Raghavan, G. S. V. Microwave-assisted Convective Air Drying of Thin Layer Carrots. J. Food Eng. 1995, 25, 283–293. DOI: 10.1016/0260-8774(94)00031-4.
  • Yongsawatdigul, J.; Gunasekaran, S. Microwave-vacuum Drying of Cranberries: Part IIQuality Evaluation. J. Food Process. Preserv. 1996, 20, 145–156. DOI: 10.1111/j.1745-4549.1996.tb00851.x.
  • Sarimeseli, A.;. Microwave Drying Characteristics of Coriander (Coriandrum Sativum L.) Leaves. Energy Convers. Manag. 2011, 52, 1449–1453. DOI: 10.1016/j.enconman.2010.10.007.
  • Linqiang, M.; Song, M.; Mingbin, L.; Yanchang, W.; Pengyue, M. Microwave Drying Characteristics of Chinese Wolfberry and the Effect on the Quality of Chinese Wolfberry. J Agric Mech Res. 2015, 5, 208–211. DOI: 10.13427/j.cnki.njyi.2015.05.046.
  • Salazar-González, C.; Martín-González, M. F. S.; López-Malo, A.; Sosa-Morales, M. E. Recent Studies Related to Microwave Processing of Fluid Foods. Food Bioprocess Technol. 2012, 5, 31–46.
  • Chandrasekaran, S.; Ramanathan, S.; Basak, T. Microwave Food processing-A Review. Food Res. Int. 2013, 52, 243–261.
  • Chua, K. J.; Chou, S. K.; Ho, J. C.; Hawlader, M. N. A. Heat Pump Drying: Recent Developments and Future Trends. Dry. Technol. 2002, 20, 1579–1610. DOI: 10.1081/DRT-120014053.
  • Chua, K. J.; Chou, S. K.; Yang, W. M. Advances in Heat Pump Systems: A Review. Appl. Energy. 2010, 87, 3611–3624.
  • Prasertsan, S.; Saen-saby, P. Heat Pump Drying of Agricultural Materials. Dry. Technol. 1998, 16, 235–250. DOI: 10.1080/07373939808917401.
  • Zhao, D.; Peng, Y.; Li, M.; Ni, Y. Design and Application of Wolfberry Heat Pump Drying System. Trans Chin Soc Agric. March 2016, 359–365. 10.6041/j.1000-1298.2016.S0.055.
  • Colak, N.; Hepbasli, A. A Review of Heat Pump Drying: Part 1 - Systems, Models and Studies. Energy Convers. Manag. 2009, 50, 2180–2186. DOI: 10.1016/j.enconman.2009.04.031.
  • Oikonomopoulou, V. P.; Krokida, M. K.; Karathanos, V. T. The Influence of Freeze Drying Conditions on Microstructural Changes of Food Products. Procedia Food Sci. 2011, 1, 647–654. DOI: 10.1016/j.profoo.2011.09.097.
  • Krokida, M. K.; Karathanos, V. T.; Maroulis, Z. B. Effect of Freeze-drying Conditions on Shrinkage and Porosity of Dehydrated Agricultural Products. J. Food Eng. 1998, 35, 369–380. DOI: 10.1016/S0260-8774(98)00031-4.
  • Litvin, S.; Mannheim, C. H.; Miltz, J. Dehydration of Carrots by a Combination of Freeze Drying, Microwave Heating and Air or Vacuum Drying. J. Food Eng. 1998, 36, 103–111. DOI: 10.1016/S0260-8774(98)00054-5.
  • Oikonomopoulou, V. P.; Krokida, M. K.; Karathanos, V. T. Structural Properties of Freeze-dried Rice. J. Food Eng. 2011, 107, 326–333. DOI: 10.1016/j.jfoodeng.2011.07.009.
  • Marques, L. G.; Prado, M. M.; Freire, J. T. Rehydration Characteristics of Freeze-dried Tropical Fruits. LWT - Food Sci. Technol. 2009, 42, 1232–1237. DOI: 10.1016/j.lwt.2009.02.012.
  • Chassaing, A.; Komes, D.; Bušić, A., and Belščak-cvitanović, A. Preservation of Polyphenolic Antioxidants from Goji Berries (Lycium Barbarum L.) Affected by Different Drying Techniques; Universiti Kebangsaan Malaysia: Int Conf Food Prop, 2014.
  • Donno, D.; Mellano, M. G.; Raimondo, E.; Beccaro, G.L.; Prgomet, Z.; Cerutti, A.K. Influence of Applied Drying Methods on Phytochemical Composition in Fresh and Dried Goji Fruits by HPLC Fingerprint. Eur. Food Res. Technol. 2016, 242, 1961–1974. DOI: 10.1007/s00217-016-2695-z.
  • Michalczyk, M.; MacUra, R.; Matuszak, I. The Effect of Air-drying, Freeze-drying and Storage on the Quality and Antioxidant Activity of Some Selected Berries. J. Food Process. Preserv. 2009, 33, 11–21. DOI: 10.1111/j.1745-4549.2008.00232.x.
  • Xie, L.; Zheng, Z.A.; Mujumdar, A.S.; Fang, X.M.; Wang, J.; Zhang, Q.; Ma, Q.; Xiao, H.W.; Liu, H.Y.; Goa, Z.J. Pulsed Vacuum Drying (PVD) of Wolfberry: Drying Kinetics and Quality Attributes. Dry. Technol. 2018, 36(12), 1501–1514. DOI: 10.1080/07373937.2017.1414055.
  • Xie, Y.; Gao, Z.; Liu, Y.; Xiao, H. Pulsed Vacuum Drying of Rhizoma Dioscoreae Slices. LWT- Food Sci Technol 2017, 80, 237–249. DOI: 10.1016/j.lwt.2017.02.016.
  • Xu, P.; Peng, X.; Yang, J.; Li, X.; Zhang, H.; Jia, X.; Liu, Y.; Wang, Z.; Zhang, Z. Effect of Vacuum Drying and Pulsed Vacuum Drying on Drying Kinetics and Quality of Bitter Orange (Citrus Aurantium L.) Slices. J. Food Process. Preserv. 2021, 00, e16098. DOI: 10.1111/jfpp.16098.
  • Liu, Z.; Xie, L.; Zielińska, M.; Pan, Z.; Wang, J.; Deng, L.; Wang, H.; Xiao, H. Pulsed Vacuum Drying Enhances Drying of Blueberry by Altering Micro-, Ultrastructure and Water Status and Distribution. LWT- Food Sci Technol.2021, 142(8), 111013. DOI: 10.1016/j.lwt.2021.111013.
  • Riadh, M. H.; Ahmad, S. A. B.; Marhaban, M. H.; Soh,; AC; Infrared Heating in Food Drying: An Overview. Dry. Technol. 2015, 33, 322–335. 10.1080/07373937.2014.951124.
  • Grdzelishvili, G.; Hoffman, P. Infrared Drying of Food Products. Czech Tech Univ Prague, Dep Process Eng. 2012.
  • Toǧrul, H.;. Simple Modeling of Infrared Drying of Fresh Apple Slices. J. Food Eng. 2005, 71, 311–323.
  • Niamnuy, C.; Nachaisin, M.; Poomsa-Ad, N.; Devahastin, S. Kinetic Modelling of Drying and Conversion/degradation of Isoflavones during Infrared Drying of Soybean. Food Chem. 2012, 133, 946–952. DOI: 10.1016/j.foodchem.2012.02.010.
  • Reyes, A.; Vega, R.; Bustos, R.; Araneda, C. Effect of Processing Conditions on Drying Kinetics and Particle Microstructure of Carrot. Dry. Technol. 2008, 26, 1272–1285. DOI: 10.1080/07373930802307282.
  • Likitrattanaporn, C.; Noomhorm, A. Effects of Simultaneous Parboiling and Drying by Infrared Radiation Heating on Parboiled Rice Quality. Dry. Technol. 2011, 29, 1066–1075. DOI: 10.1080/07373937.2011.566967.
  • Shi, J.; Pan, Z.; McHugh, T. H.; Wood, D.; Hirschberg, E.; Olson, D. Drying and Quality Characteristics of Fresh and Sugar-infused Blueberries Dried with Infrared Radiation Heating. LWT - Food Sci. Technol. 2008, 41, 1962–1972. DOI: 10.1016/j.lwt.2008.01.003.
  • Adak, N.; Heybeli, N.; Ertekin, C. Infrared Drying of Strawberry. Food Chem. 2017, 219, 109–116. DOI: 10.1016/j.foodchem.2016.09.103.
  • Sui, Y.; Yang, J.; Ye, Q.; Li, H.; Wang, H. Infrared, Convective, and Sequential Infrared and Convective Drying of Wine Grape Pomace. Dry. Technol. 2014, 32, 686–694. DOI: 10.1080/07373937.2013.853670.
  • Xie, L.; Mujumdar, A. S.; Fang, X. M.; Wang, J.; Dai, J. W.; Du, Z. L.; Xiao, H. W.; Liu, Y. H.; Gao, Z. J. Far-infrared Radiation Heating Assisted Pulsed Vacuum Drying (FIR-PVD) of Wolfberry (Lycium Barbarum L.): Effects on Drying Kinetics and Quality Attributes. Food Bioprod. Process. 2017, 102, 320–331. DOI: 10.1016/j.fbp.2017.01.012.
  • Xie, L.; Mujumdar, A. S.; Zhang, Q.; Wang, J.; Liu, S. X.; Deng, L. Z.; Wang, D.; Xiao, H. W.; Liu, Y. H.; Gao, Z. J. Pulsed Vacuum Drying of Wolfberry: Effects of Infrared Radiation Heating and Electronic Panel Contact Heating Methods on Drying Kinetics, Color Profile, and Volatile Compounds. Dry. Technol. 2017, 35, 1312–1326. DOI: 10.1080/07373937.2017.1319854.
  • Cho, S.; Shin, M. H.; Kim, Y. K.; Seo, J. E.; Lee, Y. M.; Parl, C. H.; Chung, J. H. Effects of Infrared Radiation and Heat on Human Skin Aging in Vivo. J Investig Dermatol Symp Proc 2009, 14, 15–19. DOI: 10.1038/jidsymp.2009.7.
  • Esehaghbeygi, A.; Basiry, M. Electrohydrodynamic (EHD) Drying of Tomato Slices (Lycopersicon Esculentum). J. Food Eng. 2011, 104, 628–631. DOI: 10.1016/j.jfoodeng.2011.01.032.
  • Ding, C. J.; Lu, J.; Song, Z. Q. Electrohydrodynamic Drying of Carrot Slices. PLoS ONE. 2015, 10(4), e0124077. DOI: 10.1371/journal.pone.0124077.
  • Bai, Y. X.; Qu, M.; Quan, L. Z.; Li, X. J.; Yang, Y. X. Electrohydrodynamic Drying of Sea Cucumber (Stichopus Japonicus). LWT-Food Sci. Technol. (54), 570–576, 2013. DOI:10.1016/j.lwt.2013.06.026
  • Chen, Y.; Martynenko, A. Combination of Hydrothermodynamic (HTD) Processing and Di_erent Drying Methods for Natural Blueberry Leather. LWT-Food Sci. Technol. 2018, 87, 470–477. DOI: 10.1016/j.lwt.2017.09.030.
  • Ni, J.; Ding, C.; Zhang, Y.; Song, Z.; Hu, X.; Hao, T. (2019) Electrohydrodynamic Drying of Chinese Wolfberry in a Multiple Needle-to-plate Electrode System. Foods (Basel, Switzerland) 8: 152. doi: 10.3390/foods8050152
  • Batu, H. S.; Kadakal, E. Drying Characteristics and Degradation Kinetics in Some Parameters of Goji Berry (Lycium Barbarum L.) Fruit during Hot Air Drying. J Italian J Food Sci. 2021, 33(1), 16–28. DOI: 10.15586/ijfs.v33i1.1949.
  • Zhao, D.; Chen, D.; Peng, Y.; Wang, Y.; Zhang, Z.; Ni, Y. Kinetic Model and quality Analysis of Hot Air Drying Process of Lycium Barbarum. J. Chin. Inst. Food Sci. Technol. 2018, 018, 114–124. DOI: 10.16429/j.1009-7848.2018.03.016.
  • Hu, Y.; Wei, J.; Li, N.; Hu, H. Effect of Different Hot Air Drying Temperature on Drying Characteristics of Lycium Barbarum. J Food Ferment Indus, 2017, 130–134. DOI: 10.13995/j.cnki.11-1802/ts.201701022
  • Wan, F.; Luo, Y.; Li, W.; Wei, B.; Huang, X. Effect of Different Pretreatment Methods on Far-infrared Drying Characteristics and Polysaccharides of Lycium Barbarum. J Chin Traditional Herbal Drugs.2020, 51(16), 4183–4190. DOI: 10.7501/j.0253-2670.2020.16.011.
  • Wang, H.; Mu, S.; Wu, J.; Xie, Y. X.; Chen, X. M.; Liu, S. S. Application and Modeling Microwave Drying of Chinese Wolfberry Based on Weibull Distribution. J Modern Food Science Technol.2018, 34, 141–147. DOI: 10.13982/j.mfst.1673-9078.2018.1.022.
  • Song, H.; Chen, Q.; Bi, J.; Zhou, L.; Yi, J. Effects of Different Drying Methods and Alkali Pretreatment on Drying Characteristics and Quality of Fresh Goji Berries (Lycium Barbarum). J Food Sci.2018, 580(15), 207–216. DOI: 10.7506/spkx1002-6630-201815029.
  • Li, Q., and Tang, H. Quality Comparison between Freeze-drying and Hot-air Drying of Lycii. Fructus.J Anhui Agri Sci.2010, 38(26), 14779–14780. DOI: 10.3969/j.0517-6611.2010.26.217.
  • Wang, H.; Gao, Y.; Wang, J.; Yao, S.; Wang, W.; Ran, G.; Liu, Y.; Guo, X.; Zhang, H. Appropriate Drying Method to Improve the Quality of Dried Lycium Barbarum. J Trans Chin Soc Agric Eng.2015, 31, 271–276. DOI: 10.11975/j.1002-6819.2015.21.036.
  • Zhao, D.; Wei, J.; Hao, J.; Han, X.; Ding, S.; Yang, L. Effect of Sodium Carbonate Solution Pretreatment on Drying Kinetics, Antioxidant Capacity Changes, and Final Quality of Wolfberry (Lycium Barbarum) during Drying. J Lebensmittel Wissenschaft Und Technologie 2019, 99, 254–261. DOI: 10.1016/j.lwt.2018.09.066.