3,410
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Effects on total phenolic and flavonoid content, antioxidant properties, and angiotensin I-converting enzyme inhibitory activity of beans by solid-state fermentation with Cordyceps militaris

, , , & ORCID Icon
Pages 477-491 | Received 04 Oct 2021, Accepted 23 Feb 2022, Published online: 13 Mar 2022

References

  • FAOSTAT (2021). Retrieve from Feb 17, 2021: http://www.fao.org/faostat/en/#data/QC.
  • Hall, C.; Hillen, C.; Garden Robinson, J. Composition, Nutritional Value, and Health Benefits of Pulses. Cereal Chem. 2017, 94, 11–31. DOI: 10.1094/CCHEM-03-16-0069-FI.
  • Kutoš, T.; Golob, T.; Kač, M.; Plestenjak, A. Dietary Fibre Content of Dry and Processed Beans. Food Chem. 2003, 80(2), 231–235. DOI: 10.1016/S0308-8146(02)00258-3.
  • Yu, Z.; Fan, Y. S.; Wang, X. W.; Xia, M.; Cai, Y. In Vitro and in Vivo Digestibility of Pea and Chickpea Powder Prepared by Cooking and Drying Treatment. Int. J. Food Prop. 2020, 23(1), 1187–1199. DOI: 10.1080/10942912.2020.1792925.
  • Tang, D.; Dong, Y.; Guo, N.; Li, L.; Ren, H. Metabolomic Analysis of the Polyphenols in Germinating Mung Beans (Vigna radiata) Seeds and Sprouts. J. Agric. Food Chem. 2014, 94, 1639–1647. DOI: 10.1002/jsfa.6471.
  • Nagata, C.; Mizoue, T.; Tanaka, K.; Tsuji, I.; Tamakoshi, A.; Matsuo, K.; Wakai, K.; Inoue, M.; Tsugane, S.; Sasazuki, S., et al. Soy Intake and Breast Cancer Risk: An Evaluation Based on a Systematic Review of Epidemiologic Evidence among the Japanese Population. Japanese J. Clin. Oncol. 2014, 44(3), 282–295. DOI: 10.1093/jjco/hyt203.
  • Li, S. H.; Liu, X. X.; Bai, Y. Y.; Wang, X. J.; Sun, K.;Chen, J. Z.; Hui, R.T. Effect of Oral Isoflavone Supplementation on Vascular Endothelial Function in Postmenopausal Women: A Meta-analysis of Randomized Placebo-controlled Trials. Am. J. Clin. Nutr. 2010, 91(2), 480–486. DOI: 10.3945/ajcn.2009.28203.
  • Alekel, D. L.; Van Loan, M. D.; Koehler, K. J.; Hanson, L. N.; Stewart, J. W.; Hanson, K. B., Kurzer, M.S.; Peterson, C.T. The Soy Isoflavones for Reducing Bone Loss (SIRBL) Study: A 3-y Randomized Controlled Trial in Postmenopausal Women. Am. J. Clin. Nutr. 2010, 91(1), 218–230. DOI: 10.3945/ajcn.2009.28306.
  • Taku, K.; Melby, M. K.; Kronenberg, F.; Kurzer, M. S.; Messina, M. Extracted or Synthesized Soybean Isoflavones Reduce Menopausal Hot Flash Frequency and Severity: Systematic Review and Meta-analysis of Randomized Controlled Trials. Menopause. 2012, 19(7), 776–790. DOI: 10.1097/gme.0b013e3182410159.
  • Ma, G.; Chen, Y. Polyphenol Supplementation Benefits Human Health via Gut Microbiota: A Systematic Review via Meta-analysis. J. Funct. Foods. 2020, 66, 103829. DOI: 10.1016/j.jff.2020.103829.
  • Krishna, C.;. Solid-state Fermentation Systems-an Overview. Crit. Rev. Biotechnol. 2005, 25(1–2), 1–30. DOI: 10.1080/07388550590925383.
  • Olukomaiya, O. O.; Adiamo, O. Q.; Fernando, W. C.; Mereddy, R.; Li, X. H.; Sultanbawa, Y. Effect of Solid-state Fermentation on Proximate Composition, Anti-nutritional Factor, Microbiological and Functional Properties of Lupin Flour. Food Chem. 2020a, 315, 126238. DOI: 10.1016/j.food.chem.2020.126238.
  • Olukomaiya, O. O.; Fernando, W. C.; Mereddy, R.; Li, X. H.; Sultanbawa, Y. Physicochemical, Microbiological and Functional Properties of Camelina Meal Fermented in Solid-state Using Food Grade Aspergillus Fungi. Fermentation. 2020b, 6, 44–59. DOI: 10.3390/fermentation6020044.
  • Lan, G. Q.; Li, C. Q.; He, L. P.; Zeng, X. F.; Zhu, Q. J. Effects of Different Strains and Fermentation Method on Nattokinase Activity, Biogenic Amines, and Sensory Characteristics of Natto. J. Food Sci. Technol. 2020, 57, 4414–4423. DOI: 10.1007/s13197-020-04478-3.
  • Sharma, A.;. A Review on Traditional Technology and Safety Challenges with Regard to Antinutrients in Legume Foods. J. Food Sci. Technol. 2020. DOI: 10.1007/s13197-020-04883-8.
  • Wang, H. L.;. Tofu and Tempeh as Potential Protein Sources in the Western Diet. J. Am. Oil Chem. Soc. 1984, 61, 528–534. DOI: 10.1007/BF02677023.
  • Juan, M. Y.; Chou, C. C. Enhancement of Antioxidant Activity, Total Phenolic and Flavonoid Content of Black Soybeans by Solid State Fermentation with Bacillus subtilis BCRC 14715. Food Microbiol. 2010, 27(5), 586–591. DOI: 10.1016/j.fm.2009.11.002.
  • Polanowska, K.; Grygier, A.; Kuligowski, M.; Rudzińska, M.; Nowak, J. Effect of Tempe Fermentation by Three Different Strains of Rhizopus oligosporus on Nutritional Characteristics of Faba Beans. LWT. 2020, 122, 109024. DOI: 10.1016/j.lwt.2020.109024.
  • Reyes-Bastidas, M.; Reyes-Fernandez, E. Z.; Lopez-Cervantes, J.; Milan-Carrillo, J.; Loarca-Pina, G. F.; Reyes-Moreno, C. Physicochemical, Nutritional and Antioxidant Properties of Tempeh Flour from Common Bean (Phaseolus vulgaris L.). Food Sci. Technol. Int. 2010, 16, 427–434. DOI: 10.1177/1082013210367559.
  • Rui, X.; Wen, D.; Li, W.; Chen, X.; Jiang, M.; Dong, M. Enrichment of ACE Inhibitory Peptides in Navy Bean (Phaseolus vulgaris) Using Lactic Acid Bacteria. Food Funct. 2015, 6, 622–629. DOI: 10.1039/c4fo00730a.
  • Friedman, M.;. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods. 2016, 5(4), 80–119. DOI: 10.3390/foods5040080.
  • Tang, W.; Eisenbrand, G. Chinese Drugs of Plant Origin: Chemistry, Pharmacology and Use in Traditional and Modern Medicine; Springer-Verlag: Berlin Heidelberg, 1992.
  • Su, J. J.; Sun, J.; Jian, T. T.; Zhang, G. Y.; Ling, J. Y. Immunomodulatory and Antioxidant Effects of Polysaccharides from the Parasitic Fungus Cordyceps kyushuensis. Biomed Res. Int. 2020, 20, 8257847. DOI: 10.1155/2020/8257847.
  • Nxumalo, W.; Elateeq, A. A.; Sun, Y. F. Can Cordyceps cicadae Be Used as an Alternative to Cordyceps militaris and Cordyceps sinensis? - a Review. J. Ethnopharmacol. 2020, 257, 112879–112887. DOI: 10.1016/j.jep.2020.112879.
  • Scanafarma. (2021). http://www.scanfarma.se/ciakria.html. accessed February/17/2021.
  • Ahn, Y. J.; Park, S. J.; Lee, S. G.; Shin, S. C.; Choi, D. H. Cordycepin: Selective Growth Inhibitor Derived from Liquid Culture of Cordyceps militaris against Clostridium Spp. J. Agric. Food Chem. 2000, 48(7), 2744–2748. DOI: 10.1021/jf990862n.
  • Zhang, S.; Hao, A. J.; Zhao, Y. X.; Zhang, X. Y.; Zhang, Y. J. Comparative Mitochondrial Genomics toward Exploring Molecular Markers in the Medicinal Fungus Cordyceps militaris. Sci. Rep. 2017, 7, 40219. DOI: 10.1038/srep40219.
  • Zhao, X.; Zhang, G. Y.; Li, C. Y.; Ling, J. Y. Cordycepin and Pentostatin Biosynthesis Gene Identified through Transcriptome and Proteomics Analysis of Cordyceps kyushuensis Kob. Microbiol. Res. 2019, 218, 12–21. DOI: 10.1016/j.micres.2018.09.005.
  • Ministry of Health of the People’s Republic of China. (2009). http://www.gov.cn:8080/gzdt/2009-03/18/content_1262018.htm.
  • National Health Commission of the People’s Republic of China. (2014). http://www.nhc.gov.cn/sps/s7890/201406/8268613682e44b1cb2098e0b9c9143d7.
  • Liu, R. H.;. Whole Grain Phytochemicals and Health. J. Cereal Sci. 2007, 46(3), 207–219. DOI: 10.1016/j.jcs.2007.06.010.
  • Blois, M. S.;. Antioxidant Determinations by the Use of a Stable Free Radical. Nature. 1958, 181(4617), 1199–1200. DOI: 10.1038/1811199a0.
  • Sahingil, D.; Hayaloglu, A. A.; Kirmaci, A. H.; Ozer, B.; Simsek, O. Changes of Proteolysis and angiotensin-I Converting Enzyme-inhibitory Activity in White-brined Cheese as Affected by Adjunct Culture and Ripening Temperature. J. Dairy Res. 2014, 81, 394–402. DOI: 10.1017/S0022029914000326.
  • Bjurman, J.;. Ergosterol as an Indicator of Mold Growth on Wood in Relation to Culture Age. Int. Biodeterior. Biodegrad. 1994, 33(4), 355–368. DOI: 10.1016/0964-8305(94)90013-2.
  • Montoya Barreto, S.; Orrego Alzate, C. E.; Levin, L. Modeling Grifola frondosa Fungal Growth during Solid-state Fermentation. Eng. Life Sci. 2011, 11(3), 316–321. DOI: 10.1002/elsc.201000087.
  • Masisi, K.; Beta, T.; Moghadasian, M. H. Antioxidant Properties of Diverse Cereal Grains: A Review on in Vitro and in Vivo Studies. Food Chem. 2016, 196, 90–97. DOI: 10.1016/j.foodchem.2015.09.021.
  • Dey, T. B.; Chakraborty, S.; Jain, K. K.; Sharma, A.; Kuhad, R. C. Antioxidant Phenolics and Their Microbial Production by Submerged and Solid State Fermentation Process: A Review. Trends Food Sci. Technol. 2016, 53, 60–74. DOI: 10.1016/j.tifs.2016.04.007.
  • Martins, E. S.; Silva, D.; Da Silva, R.; Gomes, E. Solid State Production of Thermostable Pectinases from Thermophilic Thermoascus aurantiacus. Process Biochem. 2002, 37(9), 949–954. DOI: 10.1016/S0032-9592(01)00300-4.
  • Razak, D. L. A.; Rashid, N. Y. A.; Jamaluddin, A.; Sharifudin, S. A.; Long, K. Enhancement of Phenolic Acid Content and Antioxidant Activity of Rice Bran Fermented with Rhizopus oligosporus and Monascus purpureus. Biocatal Agric. Biotechnol. 2015, 4(1), 33–38. DOI: 10.1016/j.bcab.2014.11.003.
  • Schmidt, C. G.; Gonçalves, L. M.; Prietto, L.; Hackbart, H. S.; Furlong, E. B. Antioxidant Activity and Enzyme Inhibition of Phenolic Acids from Fermented Rice Bran with Fungus Rizhopus oryzae. Food Chem. 2014, 146, 371–377. DOI: 10.1016/j.foodchem.2013.09.101.
  • Wu, G.; Fang, Z.; Johnson, S. K. CHAPTER 16: Sorghum Non-extractable Polyphenols: Chemistry, Extraction and Bioactivity. In Non-extractable Polyphenols and Carotenoids: Importance in Human Nutrition and Health; Eds. Saura-Calixto, F., Pérez-Jiménez, J. Roal Society of Chemistry: London, UK, 2018; pp 326–344. DOI: 10.1039/9781788013208-00326.
  • Spencer, J. P. E.; Mohsen, M. M. A. E.; Rice-Evans, C. Cellular Uptake and Metabolism of Flavonoids and Their Metabolites: Implications for Their Bioactivity. Arch. Biochem. Biophys. 2004, 423(1), 148–161. DOI: 10.1016/j.abb.2003.11.010.
  • Velioglu, Y. S.; Mazza, G.; Gao, L.; Oomah, B. D. Antioxidant Activity and Total Phenolics in Selected Fruits, Vegetables, and Grain Products. J. Agric. Food Chem. 1998, 46(10), 4113–4117. DOI: 10.1021/jf9801973.
  • Sun, T.; Ho, C. T. Antioxidant Activities of Buckwheat Extracts. Food Chem. 2005, 90(4), 743–749. DOI: 10.1016/j.foodchem.2004.04.035.
  • Cunningham, K. G.; Manson, W.; Spring, F. S.; Hutchinson, S. A. Cordycepin, a Metabolic Product Isolated from Cultures of Cordyceps militaris (Linn.) Link. Nature. 1950, 166, 949. DOI: 10.1038/166949a0.
  • Yu, X. H.; Ling, J. Y.; Liu, X. F.; Guo, S.; Lin, Y. D.; Liu, X. G.;Su, L. Cordycepin Induces Autophagy-mediated c-FLIPL Degradation and Leads to Apoptosis in Human Non-small Cell Lung Cancer Cells. Oncotarget.2017, 8(4), 6691–6699. DOI: 10.18632/oncotarget.14262.
  • Oh, J.; Yoon, D. H.; Shrestha, B.; Choi, H. K.; Sung, G. H. Metabolomic Profiling Reveals Enrichment of Cordycepin in Senescence Process of Cordyceps militaris Fruit Bodies. J. Microbiol. 2019, 57(1), 54–63. DOI: 10.1007/s12275-019-8486-z.
  • Chang, W.; Lim, S.; Song, H.; Song, B. W.; Kim, H. J.; Cha, M. J., Sung, J.M., Kim, T.W.; Hwang, K.C. Cordycepin Inhibits Vascular Smooth Muscle Cell Proliferation. Eur. J. Pharmacol. 2008, 597(1–3), 64–69. DOI: 10.1016/j.ejphar.2008.08.030.
  • Hwang, I. K.; Lim, S. S.; Yoo, K. Y.; Lee, Y. S.; Kim, H. G.; Kang, I. J.; Kwon, H.J.;Park, J.; Choi, S.Y.; Won, M.H. A Phytochemically Characterized Extract of Cordyceps militaris and Cordycepin Protect Hippocampal Neurons from Ischemic Injury in Gerbils. J. Med. Plant Nat. Prod. Res. 2008, 74(2), 114–119. DOI: 10.1055/s-2008-1034277.
  • Cho, H. J.; Cho, J. Y.; Rhee, M. H.; Lim, C. R.; Park, H. J. Cordycepin (3’-deoxyadenosine) Inhibits Human Platelet Aggregation Induced by U46619, a TXA2 Analogue. J. Pharm. Pharmacol. 2006, 58(12), 1677–1682. DOI: 10.1211/jpp.58.12.0016.
  • Vongsangnak, W.; Raethong, N.; Mujchariyakul, W.; Nguyen, N. N.; Leong, H. W.; Laoteng, K. Genome-scale Metabolic Network of Cordyceps militaris Useful for Comparative Analysis of Entomopathogenic Fungi. Gene. 2017, 626, 132–139. DOI: 10.1016/j.gene.2017.05.027.
  • Xia, Y. L.; Luo, F. F.; Shang, Y. F.; Chen, P. L.; Lu, Y. Z.; Wang, C. S. Fungal Cordycepin Biosynthesis Is Coupled with the Production of the Safeguard Molecule Pentostatin. Cell. Chem. Biol. 2017, 24, 1479–1489. DOI: 10.1016/j.chembiol.2017.09.001.
  • Wang, Y. M.; Zhang, G. Y.; Zhao, X.; Ling, J. Y. Genome Shuffling Improved the Nucleosides Production in Cordyceps kyushuensis. J. Biotechnol. 2017, 260, 42–47. DOI: 10.1016/j.jbiotec.2017.08.021.
  • Wongsa, B.; Raethong, N.; Chumnanpuen, P.; Wong-ekkabut, J.; Laotenge, K.; Vongsangnak, W. Alternative Metabolic Routes in Channeling Xylose to Cordycepin Production of Cordyceps militaris Identified by Comparative Transcriptome Analysis. Genomics. 2020, 112, 629–636. DOI: 10.1016/j.ygeno.2019.04.015.
  • Tang, J. P.; Liu, Y. T.; Li, Z. Optimization of Fermentation Conditions and Purification of Cordycepin from Cordyceps militaris. Prep Biochem Biotechnol. 2014, 44(1), 90–106. DOI: 10.1080/10826068.2013.833111.
  • Amarowicz, R.; Pegg, R. B.; Rahimi-Moghaddam, P.; Barl, B., and Weil, J. A. Free-radical Scavenging Capacity and Antioxidant Activity of Selected Plant Species from the Canadian prairies. Food Chem. 2004, 84(4), 551–562. DOI: 10.1016/S0308-8146(03)00278-4.
  • Wade, A. M.; Tucker, H. N. Antioxidant Characteristics of L-histidine. J. Nutr. Biochem. 1998, 9(6), 308–315. DOI: 10.1016/S0955-2863(98)00022-9.
  • Wali, A.; Mijiti, Y.; Gao, Y. H.; Abulimiti, Y.; Haji, A. A.; Adilijiang, K. Isolation and Identification of a Novel Antioxidant Peptide from Chickpea (Cicer arietinum L.) Sprout Protein Hydrolysates. Int. J. Pept. Res. Ther. 2021, 27, 219–227. DOI: 10.1007/s10989-020-10070-2.
  • Li, W.; Wang, T. Effect of Solid-state Fermentation with Bacillus subtilis Lwo on the Proteolysis and the Antioxidative Properties of Chickpeas. Int. J. Food Microbiol. 2021, 338, 108988. DOI: 10.1016/j.ijfoodmicro.2020.108988.
  • Daskaya-Dikmen, C.; Yucetepe, A.; Karbancioglu-Guler, F.; Daskaya, H.; Ozcelik, B. Angiotensin-I-converting Enzyme (Ace)-inhibitory Peptides from Plants. Nutrients. 2017, 9, 316. DOI: 10.3390/nu9040316.
  • Ayyash, M.; Johnson, S. K.; Liu, S. Q.; Mesmari, N.; Dahmani, S.; Dhaheri, A. S. A.; Kizhakkayil, J. In Vitro Investigation of Bioactivities of Solid-state Fermented Lupin, Quinoa and Wheat Using Lactobacillus Spp. Food Chem. 2019, 275, 50–58. DOI: 10.1016/j.foodchem.2018.09.031.
  • Bei, Q.; Liu, Y.; Wang, L.; Chen, G.; Wu, Z. Q. Improving Free, Conjugated, and Bound Phenolic Fractions in Fermented Oats (Avena sativa L.) With Monascus anka and Their Antioxidant Activity. J. Funct. Foods. 2017, 32, 185–194. DOI: 10.1016/j.jff.2017.02.028.
  • Pyo, Y. H.; Lee, T. C. The Potential Antioxidant Capacity and Angiotensin I-converting Enzyme Inhibitory Activity of Monascus-fermented Soybean Extracts: Evaluation of Monascus- Fermented Soybean Extracts as Multifunctional Food Additives. J. Food Sci. 2007, 72(3), S218–S223. DOI: 10.1111/j.1750-3841.2007.00312.x.
  • Juan, M. Y.; Wu, C. H.; Chou, C. C. Fermentation with Bacillus Spp. A Bioprocess to Enhance Anthocyanin Content, the Angiotensin Converting Enzyme Inhibitory Effect, and the Reducing Activity of Black Soybeans. Food Microbiol. 2010, 27(7), 918–923. DOI: 10.1016/j.fm.2010.05.009.
  • Rochіn-Medina, J. J.; Gutierrez-Dorado, R.; Sanchez-Magana, L. M.; Milan-Carrillo, J.; Cuevas- Rodriguez, E. O.; Mora-Rochin, S.; Valdez-Ortiz, A.;Reyes-Moreno, C. Enhancement of Nutritional Properties, and Antioxidant and Antihypertensive Potential of Black Common Bean Seeds by Optimizing the Solid-state Bioconversion Process. Int. J. Food Sci. Nutr. 2015, 66, 498–504. DOI: 10.3109/09637486.2015.1052377.