1,281
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Comparative study of biochemical properties, anti-nutritional profile, and antioxidant activity of newly developed rye variants

ORCID Icon, ORCID Icon, ORCID Icon, , , , ORCID Icon, & show all
Pages 608-616 | Received 11 Oct 2021, Accepted 10 Mar 2022, Published online: 27 Mar 2022

References

  • Grabiński, J.; Sułek, A.; Wyzińska, M.; Stuper-Szablewska, K.; Cacak-Pietrzak, G.; Nieróbca, A.; Dziki, D. Impact of Genotype, Weather Conditions and Production Technology on the Quantitative Profile of Anti-Nutritive Compounds in Rye Grains. Agronomy. 2021, 11(1), 151. DOI: 10.3390/agronomy11010151.
  • Gumul, D.; Berski, W.; Hern Ndez, E. The Polyphenol Profile and Antioxidant Potential of Irradiated Rye Grains. Int. J. Food Sci. 2021, 2021, 1–7. DOI: 10.1155/2021/8870754.
  • Fattakhova, Z. F.; Shakirov, S. K.; Krupin, E. O.; Bikchantaev, I. T.; Shayakhmetova, L. N., and Askarova, A. A. The Chemical Composition, Nutrition And Fractional Composition Of Winter Rye Grain Proteins After Various Methods Of Exposure. Carpathian J. Food Sci. Technol. 2020, 12(1), 71–79.
  • Bakera, B.; Święcicka, M.; Stochmal, A.; Kowalczyk, M.; Bolibok, L.; Rakoczy-Trojanowska, M. Benzoxazinoids Biosynthesis in Rye (Secale Cereale L.) Is Affected by Low Temperature. Agronomy. 2020, 10(9), 1260. DOI: 10.3390/agronomy10091260.
  • Andersson, R.; Fransson, G.; Tietjen, M.; Aman, P. Content and Molecular weight Distribution of Dietary Fiber Components in Whole-grain Rye Flour and Bread. J. Agri. Food Chem. 2009, 57(5), 2004–2008. https://doi.org/10.1021/jf801280f
  • Chen, T.; Chen, D.; Tian, G.; Zheng, P.; Mao, X.; Yu, B.; Yu, B. Soluble Fiber and Insoluble Fiber Regulate Colonic Microbiota and Barrier Function in a Piglet Model. BioMed. Res. Inter. 2019, 2019, 1–12. DOI: 10.1155/2019/7809171.
  • Bach Knudsen, K. E.; Norskov, N. P.; Bolvig, A. K.; Hedemann, M. S.; Laerke, H. N. Dietary Fibers and Associated Phytochemicals in Cereals. Mol. Nutr. Food Res. 2017, 61(7), 1600518. DOI: 10.1002/mnfr.201600518.
  • Koistinen, V. M.; Nordlund, E.; Katina, K.; Mattila, I.; Poutanen, K.; Hanhineva, K.; Aura, A.-M. Effect of Bioprocessing on the in Vitro Colonic Microbial Metabolism of Phenolic Acids from Rye Bran Fortified Breads. J. Agri. Food Chem. 2017, 65(9), 1854–1864. DOI: 10.1021/acs.jafc.6b05110.
  • Koistinen, V. M.; Mattila, O.; Katina, K.; Poutanen, K.; Aura, A. M.; Hanhineva, K. Metabolic Profiling of Sourdough Fermented Wheat and Rye Bread. Sci. Rep. 2018, 8(1), 5684. DOI: 10.1038/s41598-018-24149-w.
  • Kulichová, K.; Sokol, J.; Nemeček, P.; Maliarová, M.; Maliar, T.; Havrlentová, M.; Kraic, J. Phenolic Compounds and Biological Activities of Rye (Secale Cereale L.) Grains. Open Chem. 2019, 17(1), 988–999. DOI: 10.1515/chem-2019-0103.
  • Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Lampousi, A. M.; Knuppel, S.; Iqbal, K.; Boeing, H. Food Groups and Risk of All-cause Mortality: A Systematic Review and Meta-analysis of Prospective Studies. Am. J. Clin. Nutr. 2017b, 105(6), 1462–1473. DOI: 10.3945/ajcn.117.153148.
  • Bolvig, A. K.; Norskov, N. P.; van Vliet, S.; Foldager, L.; Curtasu, M. V.; Hedemann, M. S.; Bach Knudsen, K. E.; Lærke, H. N.; Bach Knudsen, K. E. Rye Bran Modified with Cell Wall-degrading Enzymes Influences the Kinetics of Plant Lignans but Not of Enterolignans in Multicatheterized Pigs. J. Nutr. 2017, 147(12), 2220–2227. DOI: 10.3945/jn.117.258483.
  • Ikram, A.; Saeed, F.; Arshad, M. U.; Afzaal, M.; Anjum, F. M. Structural and Nutritional Portrayal of Rye‐supplemented Bread Using Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy. Food Sci. Nut. 2021, 9(11), 6314–6321. DOI: 10.1002/fsn3.2592.
  • AACC Approved Methods of the AACC. Methods 08- 12, 10-10B, 32-40, 44-15A, 54-21, 55-31, 56-81B and 66-20, 10th ed.; American Association of Cereal Chemists: St. Paul, MN, 2000.
  • Latimer, Jr, Latimer George, W . Official methods of analysis of AOAC INTERNATIONAL 20th edition, Appendix D, Guidelines for collaborative study procedures to validate characteristics of a method of analysis, ed.; Gaithersburg, MD, USA, 2016; p. 467. http://www.aoac.org/iMIS15_Prod/AOAC/PUBS/OMAP/AOAC_Member/PUBSCF/O-468-MACF/OMAP_M.aspx?hkey=5142c478-ab50-4856-8939-a7a491756f48 ( Last accesed 469 14/09/2016)
  • Lierop, W. V. Digestion Procedures for Simultaneous Automated Determination of NH4, P, K, Ca and Mg in Plant Material. Can. J. Soil Sci. 1976, 56(4), 425–432. DOI: 10.4141/cjss76-051.
  • Gorsuch, T. T. Radiochemical Investigations on the Recovery for Analysis of Trace Elements in Organic and Biological Materials. Report to the Analytical Methods Committee by the Society’s First Analytical Chemistry Research Scholar. Analyst. 1959, 84(996), 135–173. DOI: 10.1039/an9598400135.
  • Prabhavathi, O.; Yuvarajan, R.; Natarajan, D. Mosquitocidal Properties of Ocimum Canum Sims (Lamiaceae) Leaf Extracts against Dengue Vector Aedes Aegypti L.(Diptera: Culicidae). J. Entomol. Res. 2016, 48(3), 345–354.
  • Chakraborty, A. K.; Saha, S.; Poria, K.; Samanta, T.; Gautam, S., and Mukopadhyay, J. An Abundant New Saponin-Polybromophenol Antibiotic (CU1) from Cassia Fistula Bark against Multi-Drug Resistant Bacteria Targeting RNA Polymerase. bioRxiv doi:10.1101/2020.11.04.369058. 2020.
  • Petruczynik, A. Analysis of Alkaloids from Different Chemical Groups by Different Liquid Chromatography Methods. Open Chem. 2012, 10(3), 802–835.
  • Sengul, H.; Surek, E.; Nilufer-Erdil, D. Investigating the Effects of Food Matrix and Food Components on Bioaccessibility of Pomegranate (Punica Granatum) Phenolics and Anthocyanins Using an In-vitro Gastrointestinal Digestion Model. Food Res. Inte. 2014, 62, 1069–1079. DOI: 10.1016/j.foodres.2014.05.055.
  • Ghasemzadeh, A.; Jaafar, H. Z. Profiling of Phenolic Compounds and Their Antioxidant and Anticancer Activities in Pandan (Pandanus Amaryllifolius Roxb.) Extracts from Different Locations of Malaysia. BMC Complement Altern. Med. 2013, 13(1), 1–9. DOI: 10.1186/1472-6882-13-341.
  • Tomsone, L.; Kruma, Z.; Galoburda, R. Comparison of Different Solvents and Extraction Methods for Isolation of Phenolic Compounds from Horseradish Roots (Armoracia Rusticana). World Acad. Sci. Eng. Technol. 2012, 64(4), 903–908.
  • Hossain, M. B.; Brunton, N. P.; Barry-Ryan, C.; Martin-Diana, A. B.; Wilkinson, M. Antioxidant Activity of Spice Extracts and Phenolics in Comparison to Synthetic Antioxidants. Rasayan J. Chem. 2008, 1(4), 751–756.
  • Hameed, S.; Imran, A.; Nisa, M. U.; Arshad, M. S.; Saeed, F.; Arshad, M. U.; Asif Khan, M. Characterization of Extracted Phenolics from Black Cumin (Nigella Sativa Linn), Coriander Seed (Coriandrum Sativum L.), And Fenugreek Seed (Trigonella Foenum-graecum). Inter. J. Food Prop. 2019, 22(1), 714–726. DOI: 10.1080/10942912.2019.1599390.
  • Steel, R. G. D. Analysis of variance II: multiway classifications. Principles and Procedures of Statistics a Biometrical Approach. 1997, 204–252.
  • Hansen, H. B.; Rasmussen, C. V.; Bach Knudsen, K. E.; Hansen, A. E_ects of Genotype and Harvest Year on Content and Composition of Dietary Fibre in Rye (Secale Cereale L.) Grain. J. Sci. Food Agri. 2003, 83(1), 76–85. DOI: 10.1002/jsfa.1284.
  • McLeod, J. G.; Gan, Y. Hazlet winter rye. Canadian J. Plant Sci. 2008, 88(3), 527–529. DOI: 10.4141/CJPS07171.
  • Banu, I.; Vasilean, I. Relationships between the Rye Quality Factors. Sci. Study Res. 2009, 10(3), 265–270.
  • Joye, I. J.; Joye, I. J. Dietary Fibre from Whole Grains and Their Benefits on Metabolic Health. Nutrients. 2020, 12(10), 3045. DOI: 10.3390/nu12103045.
  • Gartaula, G.; Dhital, S.; Netzel, G.; Flanagan, B. M.; Yakubov, G. E.; Beahan, C. T.; Collins, H. M.; Burton, R. A.; Bacic, A.; Gidley, M. J. Quantitative Structural Organisation Model for Wheat Endosperm Cell Walls: Cellulose as an Important Constituent. Carbohydr. Polym. 2018, 196, 199–208. DOI: 10.1016/j.carbpol.2018.05.041.
  • Bağcı, A.; Gecgel, Ü.; Dursun, N.; Özcan, M. M.; Tamkoç, A.; Özer, İ.; Özcan, M. M. The Oil Yields, Mineral Contents and Fatty Acid Compositions of Some Rye (Secale Cereale) Grains. Iran. J. Chem. Chem. Eng. 2019, 38(5), 285–292.