1,345
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Effect of ripening and in vitro digestion on free amino acids and Angiotensin I converting enzyme inhibitory (ACE-I) potential of cow and Buffalo milk cheddar cheeses

, ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 948-959 | Received 06 Sep 2021, Accepted 21 Apr 2022, Published online: 05 May 2022

References

  • Ong, L.; Shah, N. P. Release and Identification of Angiotensin-converting Enzyme-inhibitory Peptides as Influenced by Ripening Temperatures and Probiotic Adjuncts in Cheddar Cheeses. LWT - Food Sci. Technol. 2008, 41, 1555–1566. DOI: 10.1016/j.lwt.2007.11.026.
  • McCarthy, C. M.; Kelly, P. M.; Wilkinson, M. G.; Guinee, T. P. Effect of Fat and Salt Reduction on the Changes in the Concentrations of Free Amino Acids and Free Fatty Acids in Cheddar-style Cheeses during Maturation. J. Food Compos. Anal. 2017, 59, 132–140. DOI: 10.1016/j.jfca.2017.01.007.
  • Fox, P. F.; Uniacke-Lowe, T.; McSweeney, P. L. H.; O’Mahony, J. A. Chemistry and Biochemistry of Cheese. Dairy Chem. Biochem 2015, 499–546. DOI: 10.1007/978-3-319-14892-2_12.
  • Mamo, A. Cheddar Cheese Characterization and Its Biochemical Change during Ripening. Int. J. Adv. Sci. Res. Manag. 2017, 2
  • Rahim, M. A.; Khalid, W.; Ranjha, M. M. A. N.; Ambreen, S.; Fizza, C.; Tariq, A.; Ali, M.; Hasan, A.; Rauf, A.; Aziz, A. Nutritional Composition and Medicinal Properties of Camel Milk, and Cheese Processing. Int. J. Biosci. 2020, 17, 83–98. DOI: 10.12692/ijb/17.4.83-98.
  • Mayo, B.; Rodríguez, J.; Vázquez, L.; Flórez, A. B. Microbial Interactions within the Cheese Ecosystem and Their Application to Improve Quality and Safety. Foods. 2021, 10, 602. DOI: 10.3390/FOODS10030602.
  • Quijada, N. M.; Schmitz-Esser, S.; Zwirzitz, B.; Guse, C.; Strachan, C. R.; Wagner, M.; Wetzels, S. U.; Selberherr, E.; Dzieciol, M. Austrian Raw-Milk Hard-Cheese Ripening Involves Successional Dynamics of Non-Inoculated Bacteria and Fungi. Foods. 2020, 1851, 9, 18519. DOI: 10.3390/FOODS9121851.
  • Levante, A.; De Filippis, F.; La Storia, A.; Gatti, M.; Neviani, E.; Ercolini, D.; Lazzi, C. Metabolic Gene-targeted Monitoring of Non-starter Lactic Acid Bacteria during Cheese Ripening. Int. J. Food Microbiol. 2017, 257, 276–284. DOI: 10.1016/j.ijfoodmicro.2017.07.002.
  • Ranjha, M. M.; Shafique, B.; Batool, M.; Kowalczewski, P. Ł.; Shehzad, Q.; Usman, M.; Manzoor, M. F.; Zahra, S. M.; Yaqub, S.; Aadil, R. M. Nutritional and Health Potential of Probiotics: A Review. Appl. Sci. 2021. DOI: 10.3390/app112311204.
  • Fox, P. F.; Guinee, T. P.; Cogan, T. M.; McSweeney, P. L. H. Fundamentals of Cheese Science. In Biochemistry of Cheese Ripening; Springer: Boston:MA, 2017; pp 391–442. DOI:10.1007/978-1-4899-7681-9_12.
  • Nayik, G. A.; Jagdale, Y. D.; Gaikwad, S. A.; Devkatte, A. N.; Dar, A. H.; Dezmirean, D. S.; Bobis, O.; Ranjha, M. M. A. N.; Ansari, M. J.; Hemeg, H. A., et al. Recent Insights into Processing Approaches and Potential Health Benefits of Goat Milk and Its Products: A Review. Front. Nutr. 2021, 8, 789117. DOI: 10.3389/fnut.2021.789117.
  • Britten, M.; Giroux, H. J. Rennet Coagulation of Heated Milk: A Review. Int. Dairy J. 2021, 105179, DOI:10.1016/j.idairyj.2021.105179. in Press.
  • Blaya, J.; Barzideh, Z.; LaPointe, G. Symposium Review: Interaction of Starter Cultures and Nonstarter Lactic Acid Bacteria in the Cheese Environment1. J. Dairy Sci. 2018, 101, 3611–3629. DOI: 10.3168/jds.2017-13345.
  • Wu, C. H.; Mohammadmoradi, S.; Chen, J. Z.; Sawada, H.; Daugherty, A.; Lu, H. S. Renin-angiotensin System and Cardiovascular Functions. Arterioscler. Thromb. Vasc. Biol. 2018, 38. DOI: 10.1161/ATVBAHA.118.311282.
  • Li, G. H.; Le, G. W.; Shi, Y. H.; Shrestha, S. Angiotensin I–converting Enzyme Inhibitory Peptides Derived from Food Proteins and Their Physiological and Pharmacological Effects. Nutr. Res. 2004, 24(7), 469–486. DOI: 10.1016/S0271-5317(04)00058-2.
  • López-Fandiño, R.; Otte, J.; Van Camp, J. Physiological, Chemical and Technological Aspects of Milk-protein-derived Peptides with Antihypertensive and ACE-inhibitory Activity. Int. Dairy J. 2006, 16(11), 1277–1293. DOI: 10.1016/j.idairyj.2006.06.004.
  • Korhonen, H.; Pihlanto, A. Bioactive Peptides: Production and Functionality. Int. Dairy J. 2006, 16(9), 945–960. DOI: 10.1016/j.idairyj.2005.10.012.
  • Pripp, A. H.; Sørensen, R.; Stepaniak, L.; Sørhaug, T. Relationship between Proteolysis and angiotensin-I-converting Enzyme Inhibition in Different Cheeses. LWT Food Sci. Technol. 2006, 39(6), 677–683. DOI: 10.1016/j.lwt.2005.03.018.
  • Gupta, A.; Mann, B.; Kumar, R.; Sangwan, R. B. ACE-inhibitory Activity of Cheddar Cheeses Made with Adjunct Cultures at Different Stages of Ripening. Adv Dairy Res. 2013, 1(1), 102.
  • Fitzgerald, R. J.; Murray, B. A. Bioactive Peptides and Lactic Fermentations. Int. J. Dairy Technol. 2006, 59(2), 118–125. DOI: 10.1111/j.1471-0307.2006.00250.x.
  • Irlinger, F.; Mounier, J. Microbial Interactions in Cheese: Implications for Cheese Quality and Safety. Curr. Opin. Biotechnol. 2009, 20, 142–148. DOI: 10.1016/j.copbio.2009.02.016.
  • Yang, E.; Fan, L.; Jiang, Y.; Doucette, C.; Fillmore, S. Antimicrobial Activity of Bacteriocin-producing Lactic Acid Bacteria Isolated from Cheeses and Yogurts. AMB Express. 2012, 2, 48. DOI: 10.1186/2191-0855-2-48.
  • Zuljan, F. A.; Mortera, P.; Alarcón, S. H.; Blancato, V. S.; Espariz, M.; Magni, C. Lactic Acid Bacteria Decarboxylation Reactions in Cheese. Int. Dairy J. 2016, 62, 53–62. DOI: 10.1016/j.idairyj.2016.07.007.
  • Beermann, C.; Hartung, J. Physiological Properties of Milk Ingredients Released by Fermentation. Food Funct. 2013, 4, 185–199. DOI: 10.1039/C2FO30153A.
  • Lawrence, R. C.; Gilles, J.; Creamer, L. K.; Crow, V. L.; Heap, H. A.; Honoré, C. G.; Johnston, K. A.; Samal, P. K. Cheddar Cheese and Related Dry-salted Cheese Varieties. Cheese Chem. Phys. Microbiol. 2004, 2, 71–102. DOI: 10.1016/S1874-558X(04)80040-X.
  • Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D., et al. A Standardised Static in Vitro Digestion Method Suitable for Food-an International Consensus. Food Funct. 2014, 5, 1113–1124. DOI: 10.1039/c3fo60702j.
  • Qureshi, T. M.; Vegarud, G. E.; Abrahamsen, R. K.; Skeie, S. Characterization of the Norwegian Autochthonous Cheese Gamalost and Its Angiotensin I-converting Enzyme (ACE) Inhibitory Activity during Ripening. Dairy Sci. Technol. 2012, 92, 613–625. DOI: 10.1007/s13594-012-0078-1.
  • Hyun, C. K.; Shin, H. K. Utilization of Bovine Blood Plasma Proteins for the Production of Angiotensin I Converting Enzyme Inhibitory Peptides. Process Biochem. 2000, 36, 65–71. DOI: 10.1016/S0032-9592(00)00176-X.
  • Qureshi, T. M.; Vegarud, G. E.; Abrahamsen, R. K.; Skeie, S. Angiotensin I-converting Enzyme-inhibitory Activity of the Norwegian Autochthonous Cheeses Gamalost and Norvegia after in Vitro Human Gastrointestinal Digestion. J. Dairy Sci. 2013, 96, 838–853. DOI: 10.3168/jds.2012-5993.
  • Baptista, D. P.; Gigante, M. L. Bioactive Peptides in Ripened Cheeses: Release during Technological Processes and Resistance to the Gastrointestinal Tract. J. Sci. Food Agric. 2021, 101, 4010–4017. DOI: 10.1002/JSFA.11143.
  • Martini, S.; Conte, A.; Tagliazucchi, D. Effect of Ripening and in Vitro Digestion on the Evolution and Fate of Bioactive Peptides in Parmigiano-Reggiano Cheese. Int. Dairy J. 2020, 105, 104668. DOI: 10.1016/J.IDAIRYJ.2020.104668.
  • Stuknyte, M.; Cattaneo, S.; Masotti, F.; De Noni, I. Occurrence and Fate of ACE-inhibitor Peptides in Cheeses and in Their Digestates following in Vitro Static Gastrointestinal Digestion. Food Chem. 2015, 168, 27–33. DOI: 10.1016/j.foodchem.2014.07.045.
  • Sahingil, D.; Hayaloglu, A. A.; Kirmaci, H. A.; Özer, B.; Simsek, O. Changes of Proteolysis and angiotensin-I Converting Enzyme-inhibitory Activity in White-brined Cheese as Affected by Adjunct Culture and Ripening Temperature. J. Dairy Res. 2014, 81, 394–402. DOI: 10.1017/S0022029914000326.