4,315
Views
7
CrossRef citations to date
0
Altmetric
Review

Use of chromatographic-based techniques and chemometrics for halal authentication of food products: A review

, , , , &
Pages 1399-1416 | Received 13 Apr 2022, Accepted 22 May 2022, Published online: 30 May 2022

References

  • Hassan, N.; Ahmad, T.; Zain, N. M. Chemical and Chemometric Methods for Halal Authentication of Gelatin: An Overview. J. Food Sci. 2018, 83(12), 2903–2911. DOI: 10.1111/1750-3841.14370.
  • Mursyidi, A. The Role of Chemical Analysis in the Halal Authentication of Food and Pharmaceutical Products. J. Food Pharm. Sci. 2013, 1, 1–4.
  • Mahama, S.; Waloh, N.; Chayutsatid, C.; Sirikwanpong, S.; Ayukhen, A.; Marnpae, M.; Nungarlee, U.; Petchareon, P.; Munaowaroh, W.; Khemtham, M., et al. Postmarket Laboratory Surveillance for Forbidden Substances in halal-certified Foods in Thailand. J. Food Prot.2020, 83(1), 147–154. DOI: 10.4315/0362-028X.JFP-19-051.
  • Ridwan, A. Authorization of Halal Certification in Indonesia, Malaysia and Singapore. Int J Psychosoc Rehabil. 2020, 24(8), 7992–8011.
  • Faridah, H. D. Halal Certification in Indonesia; History, Development, and Implementation. J Halal Prod Res. 2019, 2(2), 68. DOI:10.20473/jhpr.vol.2-issue.2.68-78.
  • Martuscelli, M.; Serio, A.; Capezio, O.; Mastrocola, D. Meat Products, with Particular Emphasis on Salami: A Review. Foods. 2020, 9(8), 1–19. DOI: 10.3390/foods9081111.
  • Alzeer, J.; Rieder, U.; Hadeed, K. A. Good Agricultural Practices and Its Compatibility with Halal Standards. Trends Food Sci. Technol. 2020, 102, 237–241. DOI: 10.1016/j.tifs.2020.02.025.
  • Suryawan, A. S.; Hisano, S.; Jongerden, J. Negotiating Halal: The Role of non-religious Concerns in Shaping Halal Standards in Indonesia. J. Rural Stud. 2019. DOI: 10.1016/j.jrurstud.2019.09.013.
  • Alzeer, J.; Abou Hadeed, K. Ethanol and Its Halal Status in Food Industries. Trends Food Sci. Technol. 2016, 58, 14–20. DOI: 10.1016/j.tifs.2016.10.018.
  • Lubis, H. N.; Mohd-Naim, N. F.; Alizul, N. N.; Ahmed, M. U. From Market to Food Plate: Current Trusted Technology and Innovations in Halal Food Analysis. Trends Food Sci. Technol. 2016, 58, 55–68. DOI: 10.1016/j.tifs.2016.10.024.
  • Mostafa, M. M. A Knowledge Domain Visualization Review of Thirty Years of Halal Food Research: Themes, Trends and Knowledge Structure. Trends Food Sci. Technol. 2020, 99, 660–677. DOI: 10.1016/j.tifs.2020.03.022.
  • Norazmi, M. N.; Lim, L. S. Halal Pharmaceutical Industry: Opportunities and Challenges. Trends Pharmacol. Sci. 2015, 36(8), 496–497. DOI: 10.1016/j.tips.2015.06.006.
  • Huang, Y.; Li, T.; Deng, G.; Guo, S.; Zaman, F. Recent Advances in Animal Origin Identification of gelatin-based Products Using Liquid chromatography-mass Spectrometry Methods: A Mini Review. Rev. Anal. Chem. 2020, 39(1), 260–271. DOI: 10.1515/revac-2020-0121.
  • D’Atri, V.; Fekete, S.; Clarke, A.; Veuthey, J. L.; Guillarme, D. Recent Advances in Chromatography for Pharmaceutical Analysis. Anal. Chem. 2019, 91(1), 210–239. DOI: 10.1021/acs.analchem.8b05026.
  • Mota, M. F. S.; Waktola, H. D.; Nolvachai, Y.; Marriott, P. J. Gas Chromatography ‒ Mass Spectrometry for Characterisation, Assessment of Quality and Authentication of Seed and Vegetable Oils. TrAC Trends Anal. Chem. 2021, 138, 116238. DOI: 10.1016/j.trac.2021.116238.
  • Munir, M. A.; Badri, K. H. The Importance of Derivatizing Reagent in Chromatography Applications for Biogenic Amine Detection in Food and Beverages. J. Anal. Methods Chem. 2020, 2020, 1–14. DOI: 10.1155/2020/5814389.
  • Montero, L.; Herrero, M. Two-dimensional Liquid Chromatography Approaches in Foodomics – A Review. Anal. Chim. Acta. 2019, 1083, 1–18. DOI: 10.1016/j.aca.2019.07.036.
  • Iguiniz, M.; Heinisch, S. Two-dimensional Liquid Chromatography in Pharmaceutical Analysis. Instrumental Aspects, Trends and Applications. J. Pharm. Biomed. Anal. 2017, 145, 482–503. DOI: 10.1016/j.jpba.2017.07.009.
  • Aspromonte, J.; Wolfs, K.; Adams, E. Current Application and Potential Use of GC × GC in the Pharmaceutical and Biomedical Field. J. Pharm. Biomed. Anal. 2019, 176, 112817. DOI: 10.1016/j.jpba.2019.112817.
  • Xu, B.; Li, P.; Ma, F.; Wang, X.; Matthäus, B.; Chen, R.; Yang, Q.; Zhang, W.; Zhang, Q. Detection of Virgin Coconut Oil Adulteration with Animal Fats Using Quantitative Cholesterol by GC × GC-TOF/MS Analysis. Food Chem. 2015, 178, 128–135. DOI: 10.1016/j.foodchem.2015.01.035.
  • Cai, X.; Guo, Z.; Xue, X.; Xu, J.; Zhang, X.; Liang, X. Two-dimensional Liquid Chromatography Separation of Peptides Using reversed-phase/weak cation-exchange mixed-mode Column in First Dimension. J. Chromatogr. A. 2012, 1228, 242–249. DOI: 10.1016/j.chroma.2011.06.042.
  • Esteki, M.; Simal-Gandara, J.; Shahsavari, Z.; Zandbaaf, S.; Dashtaki, E.; Vander Heyden, Y. A Review on the Application of Chromatographic Methods, Coupled to Chemometrics, for Food Authentication. Food Control. 2018, 93, 165–182. DOI: 10.1016/j.foodcont.2018.06.015.
  • Yu, P.; Low, M. Y.; Zhou, W. Design of Experiments and Regression Modelling in Food Flavour and Sensory Analysis: A Review. Trends Food Sci. Technol. 2018, 71, 202–215. DOI: 10.1016/j.tifs.2017.11.013.
  • Bosque-Sendra, J. M.; Cuadros-Rodríguez, L.; Ruiz-Samblás, C.; de la Mata, A. P. Combining Chromatography and Chemometrics for the Characterization and Authentication of Fats and Oils from Triacylglycerol Compositional data-A Review. Anal. Chim. Acta. 2012, 724, 1–11. DOI: 10.1016/j.aca.2012.02.041.
  • Marini, F. Classification Methods in Chemometrics. Curr. Anal. Chem. 2009, 6(1), 72–79. DOI: 10.2174/157341110790069592.
  • Kucharska-Ambrożej, K.; Karpinska, J. The Application of Spectroscopic Techniques in Combination with Chemometrics for Detection Adulteration of Some Herbs and Spices. Microchem. J. 2020, 153, 104278. DOI: 10.1016/j.microc.2019.104278.
  • Granato, D.; Putnik, P.; Kovačević, D. B.; Santos, J. S.; Calado, V.; Rocha, R. S.; Cruz, A. G. D.; Jarvis, B.; Rodionova, O. Y.; Pomerantsev, A., et al. Trends in Chemometrics: Food Authentication, Microbiology, and Effects of Processing. Compr. Rev. Food Sci. Food Saf. 2018, 17(3), 663–677. DOI: 10.1111/1541-4337.12341.
  • Yuswan, M. H.; Nurul, N. H.; Mohamad, H.; Keso, S.; Mohamad, N. A.; Tengku, T. S.; Ismail, N. F.; Abdul Manaf, Y. N.; Mohd Hashim, A; Mohd Desa, M. N, et al. Hydroxyproline Determination for Initial Detection of halal-critical Food Ingredients (Gelatin and Collagen). Food Chem. 2021, 337, 127762. DOI: 10.1016/j.foodchem.2020.127762.
  • Cuadros-Rodríguez, L.; Ruiz-Samblás, C.; Valverde-Som, L.; Pérez-Castaño, E.; González-Casado, A. Chromatographic Fingerprinting: An Innovative Approach for Food “Identitation” and Food Authentication - A Tutorial. Anal. Chim. Acta. 2016, 909, 9–23. DOI: 10.1016/j.aca.2015.12.042.
  • Ahda, M.; Guntarti, A.; Kusbandari, A.; Guntarti, A.; Kusbandari, A.; Kusbandari, A. Application of high-pressure Liquid Chromatography for Analysis of Lard in the Meatball Product Combined with Principal Component Analysis. Asian J. Pharm. Clin. Res. 2016, 9(6), 120–123. DOI: 10.22159/ajpcr.2016.v9i6.13831.
  • Jorfi, R; Shuhaimi, M; Che Man, Y. B; Mat Hashim, D.; Sazili, A. Q; Ebrahimi, M. Amino Acid Composition Analysis of Beef, Mutton, Chevon, Chicken and Pork by HPLC Method. 57th International Congress of Meat Science and Technology. 2011;1–4.
  • Huang, Y.; Zhang, W.; Shi, Q.; Toyo’Oka, T.; Min, J. Z. Determination of d,l-Amino Acids in Collagen from Pig and Cod Skins by UPLC Using Pre-column Fluorescent Derivatization. Food Anal. Methods. 2018, 11(11), 3130–3137. DOI: 10.1007/s12161-018-1288-9.
  • Von Bargen, C.; Dojahn, J.; Waidelich, D.; Humpf, H. U.; Brockmeyer, J. New Sensitive high-performance Liquid chromatography-tandem Mass Spectrometry Method for the Detection of Horse and Pork in Halal Beef. J. Agric. Food Chem. 2013, 61(49), 11986–11994. DOI: 10.1021/jf404121b.
  • Von Bargen, C.; Brockmeyer, J.; Humpf, H. U. Meat Authentication: A New HPLC-MS/MS Based Method for the Fast and Sensitive Detection of Horse and Pork in Highly Processed Food. J. Agric. Food Chem. 2014, 62(39), 9428–9435. DOI: 10.1021/jf503468t.
  • Salamah, N.; Erwanto, Y.; Martono, S.; Maulana, I.; Rohman, A. Differentiation of Bovine and Porcine Gelatines Using LC-MS/MS and Chemometrics. Int. J. Appl. Pharm. 2019, 11(4), 2–6. DOI: 10.22159/ijap.2019v11i4.30248.
  • Yilmaz, M. T.; Kesmen, Z.; Baykal, B.; Sagdic, O.; Kacar, O.; Yetim, H.; Yetim, H., and Baykal, A. T. A Novel Method to Differentiate Bovine and Porcine Gelatins in Food Products: NanoUPLC-ESI-Q-TOF-MSE Based Data Independent Acquisition Technique to Detect Marker Peptides in Gelatin. Food Chem. 2013, 141(3), 2450–2458. DOI: 10.1016/j.foodchem.2013.05.096.
  • Jannat, B.; Ghorbani, K.; Shafieyan, H.; Kouchaki, S.; Behfar, A.; Sadeghi, N.; Beyramysoltan, S.; Rabbani, F.; Dashtifard, S.; Sadeghi, M., et al. Gelatin Speciation Using real-time PCR and Analysis of Mass spectrometry-based Proteomics Datasets. Food Control. 2018, 87, 79–87. DOI: 10.1016/j.foodcont.2017.12.006.
  • Kim, G. D.; Seo, J. K.; Yum, H. W.; Jeong, J. Y.; Yang, H. S. Protein Markers for Discrimination of Meat Species in Raw Beef, Pork and Poultry and Their Mixtures. Food Chem. 2017, 217, 163–170. DOI: 10.1016/j.foodchem.2016.08.100.
  • Sidwick, K. L.; Johnson, A. E.; Adam, C. D.; Pereira, L.; Thompson, D. F. Use of Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry and Metabonomic Profiling to Differentiate between Normally Slaughtered and Dead on Arrival Poultry Meat. Anal. Chem. 2017, 89(22), 12131–12136. DOI: 10.1021/acs.analchem.7b02749.
  • Ali, N. S. M.; Zabidi, A. R.; Manap, M. N. A.; Smsns, Z.; Yahaya, N. Effect of Different Slaughtering Methods on Metabolites of Broiler Chickens Using Ultra high-performance Liquid chromatography-time of flight-mass Spectrometry (UHPLC-TOF-MS). Food Res. 2020, 4(S1), 33–138. DOI: 10.26656/fr.2017.4(s1).s06.
  • Pan XD, Chen J, Chen Q, Huang BF, Han JL. Authentication of Pork in Meat Mixtures Using PRM Mass Spectrometry of Myosin Peptides. RSC Adv. 2018;8:11157–11162.
  • Trivedi, D. K.; Hollywood, K. A.; Rattray, N. J. W.; Ward, H.; Trivedi, D. K.; Greenwood, J., Ellis, D. I., Goodacre, R. Meat, the Metabolites: An Integrated Metabolite Profiling and Lipidomics Approach for the Detection of the Adulteration of Beef with Pork. Analyst.2016, 141(7), 2155–2164. DOI: 10.1039/c6an00108d.
  • Li, Y.; Zhang, Y.; Kang, C.; Zhao, W.; Li, S.; Wang, S. Assessment of Carbonic Anhydrase 3 as a Marker for Meat Authenticity and Performance of LC-MS/MS for Pork Content. Food Chem. 2021, 342, 128240. DOI: 10.1016/j.foodchem.2020.128240.
  • Ismail, A. M.; Sani, M. S. A.; Azid, A.; Zaki, N. N. M.; Arshad, S.; Tukiran, N. A., Abidin, S. A. S. Z. A., Samsudin, M. S., Ismail, A. Food Forensics on Gelatine Source via ultra-high-performance Liquid Chromatography diode-array Detector and Principal Component Analysis. SN Appl. Sci. 2021, 3(1), 79. DOI: 10.1007/s42452-020-04061-7.
  • Sha, X. M.; Zhang, L. J.; Tu, Z. C.; Zhang, L. Z.; Hu, Z. Z.; Li, Z., Li, X., Huang, T., Wang, H., Zhang, L., Xiao, H. The Identification of Three Mammalian Gelatins by Liquid chromatography-high Resolution Mass Spectrometry. LWT - Food Sci. Technol. 2018, 89, 74–86. DOI: 10.1016/j.lwt.2017.10.001.
  • Yuswan, M. H; Aizat, W. M.; Desa, M. N. M.; Hashim, A. M.; Rahim, N. A.; Mustafa, S.; Mohamed, R., and Lamasudin, D. U., et al. Improved gel-enhanced Liquid chromatography-mass Spectrometry by Chemometrics for Halal Proteomics. Chemom. Intell. Lab. Syst. 2019, 192, 103825. DOI: 10.1016/j.chemolab.2019.103825.
  • Ward, S.; Powles, N. T.; Page, M. I. Peptide Biomarkers for Identifying the Species Origin of Gelatin Using Coupled UPLC-MS/MS. J. Food Compos. Anal. 2018, 73, 83–90. DOI: 10.1016/j.jfca.2018.08.002.
  • Yuswan, M. H.; Aizat, W. M.; Lokman, A. A.; Desa, M. N. M.; Mustafa, S.; Junoh, N. M., Yusof, Z. N. E., Mohamed, R., Mohmad, Z., Lamasudin, D. U. Chemometrics-Assisted Shotgun Proteomics for Establishment of Potential Peptide Markers of Non-Halal Pork (Sus Scrofa) among Halal Beef and Chicken. Food Anal. Methods.2018, 11(12), 3505–3515. DOI: 10.1007/s12161-018-1327-6.
  • Li, Y.; Zhang, Y.; Li, H.; Zhao, W.; Guo, W.; Wang, S. Simultaneous Determination of Heat Stable Peptides for Eight Animal and Plant Species in Meat Products Using UPLC-MS/MS Method. Food Chem. 2018, 245, 125–131. DOI: 10.1016/j.foodchem.2017.09.066.
  • Wang, G. J.; Zhou, G. Y.; Ren, H. W.; Xu, Y.; Yang, Y.; Guo, L. H., Liu, N. Peptide Biomarkers Identified by LC–MS in Processed Meats of Five Animal Species. J. Food Compos. Anal. 2018, 73, 47–54. DOI: 10.1016/j.jfca.2018.07.004.
  • Pulungan, I. N. R.; Kartosentono, S.; Prawita, A. Validation Gas Chromatography-Fid Method for Analysis of Ethanol Content in Vinegar. J Halal Prod Res. 2018, 1(2), 22. DOI:10.20473/jhpr.vol.1-issue.2.22-31.
  • Mansur, A. R.; Oh, J.; Lee, H. S.; Oh, S. Y. Determination of Ethanol in Foods and Beverages by Magnetic stirring-assisted Aqueous Extraction Coupled with GC-FID: A Validated Method for Halal Verification. Food Chem. 2022, 366, 130526. DOI: 10.1016/j.foodchem.2021.130526.
  • Muchtaridi, M.; Musfiroh, I.; Hambali, N. N.; Indrayati, W. Determination of Alcohol Contents of Fermentated Black Tape Ketan Based on Different Fermentation Time Using Specific Gravity, Refractive Index and GC-MS Methods. J. Microbiol. Biotechnol. Food Sci. 2012, 2(3), 933–946.
  • Dahimi, O.; Hassan, M. S.; Rahim, A. A.; Abdulkarim, S. M.; A, S. M. Differentiation of Lard from Other Edible Fats by Gas chromatography-flame Ionisation Detector (GC-FID) and Chemometrics. J. Food Pharm. Sci. 2014, 2, 27–31.
  • Guntarti, A.; Ahda, M.; Kusbandari, A. Determining Fatty Acids and Halal Authentication of Sausage. Food Res. 2020, 4(2), 495–499. DOI: 10.26656/fr.2017.4(2).261.
  • Guntarti, A.; Gandjar, I. G.; Jannah, N. M. Authentication of Wistar Rat Fats with Gas Chromatography Mass Spectrometry Combined by Chemometrics. Potravin Slovak J Food Sci. 2020, 14, 52–57. DOI: 10.5219/1229.
  • Nurjuliana, M.; Che Man, Y. B.; Mat Hashim, D.; Mohamed, A. K. S. Rapid Identification of Pork for Halal Authentication Using the Electronic Nose and Gas Chromatography Mass Spectrometer with Headspace Analyzer. Meat Sci. 2011, 88(4), 638–644. DOI: 10.1016/j.meatsci.2011.02.022.
  • Rahayu, W. S.; Sundhani, E.; Saputri, S. D. The Use of Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography Mass Spectroscopy (GCMS) for Halal Authentication in Imported Chocolate with Various Variants. J. Food Pharm. Sci. 2014, 3, 6–11.
  • Pranata, A. W.; Yuliana, N. D.; Amalia, L.; Darmawan, N. Volatilomics for Halal and non-halal Meatball Authentication Using solid-phase microextraction–gas chromatography–mass Spectrometry. Arab. J. Chem. 2021, 14(5), 103146. DOI: 10.1016/j.arabjc.2021.103146.
  • Pavlidis, D. E.; Mallouchos, A.; Ercolini, D.; Panagou, E. Z.; Nychas, G. J. E. A Volatilomics Approach for off-line Discrimination of Minced Beef and Pork Meat and Their Admixture Using HS-SPME GC/MS in Tandem with Multivariate Data Analysis. Meat Sci. 2019, 151, 43–53. DOI: 10.1016/j.meatsci.2019.01.003.
  • Ahda, M.; Guntarti, A.; Kusbandari, A.; Melianto, Y. Halal Food Analysis Using GC-MS Combined with Principal Component Analysis (Pca) Based on Saturated and Unsaturated Fatty Acid Composition. Songklanakarin J. Sci. Technol. 2021, 43(2), 352–355.
  • Salamah, N.; Guntarti, A.; Ayu Lestari, P.; Gholib Gandjar, I. Fat Analysis of House Rat (Rattus Tanezumi) in Meatball Using Gas chromatography-mass Spectrometry (GC-MS) Combined with Principal Component Analysis. 2022, Indones J Pharm. DOI: 10.22146/ijp.1781.
  • Azizan, N. I.; Mokhtar, N. F. K.; Arshad, S.; Sharin, S. N.; Mohamad, N.; Mustafa, S., and Hashim, A. M. Detection of Lard Adulteration in Wheat Biscuits Using Chemometrics-Assisted GCMS and Random Forest. Food Anal. Methods.2021, 14(11), 2276–2287. DOI: 10.1007/s12161-021-02046-9.
  • Guntarti, A. Authentication of Dog Fat with Gas Chromatography-Mass Spectroscopy Combined with Chemometrics. Int. J. Chem. 2018, 10(4), 124 DOI: 10.5539/ijc.v10n4p124.
  • Guntarti, A.; Ningrum, K. P.; Gandjar, I. G.; Salamah, N. Authentication of Sprague Dawley Rats (Rattus Norvegicus) Fat with GC-MS (Gas Chromatography-Mass Spectrometry) Combined with Chemometrics. Int. J. Appl. Pharm. 2021, 13(2), 1–6. DOI: 10.22159/jap.2021v13i2.40130.
  • Heidari, M.; Talebpour, Z.; Abdollahpour, Z.; Adib, N.; Ghanavi, Z.; Aboul-Enein, H. Y. Discrimination between Vegetable Oil and Animal Fat by a Metabolomics Approach Using Gas chromatography–mass Spectrometry Combined with Chemometrics. J. Food Sci. Technol. 2020, 57(9), 3415–3425. DOI: 10.1007/s13197-020-04375-9.
  • Gardner, K.; Legako, J. F. Volatile Flavor Compounds Vary by Beef Product Type and Degree of Doneness. J. Anim. Sci. 2018, 96(10), 4238–4250. DOI: 10.1093/jas/sky287.
  • Pu, D.; Zhang, Y.; Zhang, H.; Sun, B.; Ren, F.; Chen, H., and Tang, Y. Characterization of the Key Aroma Compounds in Traditional Hunan smoke-cured Pork Leg (Larou, THSL) by Aroma Extract Dilution Analysis (AEDA), Odor Activity Value (OAV), and Sensory Evaluation Experiments. Foods.2020, 9(4), 1–16. DOI: 10.3390/foods9040413.
  • Narváez-Rivas, M.; Gallardo, E.; León-Camacho, M. Analysis of Volatile Compounds from Iberian Hams: A Review. Grasas y Aceites. 2012, 63(4), 432–454. DOI: 10.3989/gya.070112.
  • Chen, G.; Su, Y.; He, L.; Wu, H.; Shui, S. Analysis of Volatile Compounds in Pork from Four Different Pig Breeds Using Headspace solid-phase micro-extraction/gas chromatography–mass Spectrometry. Food Sci. Nutr. 2019, 7(4), 1261–1273. DOI: 10.1002/fsn3.955.
  • Kosowska, M.; Majcher, M. A.; Fortuna, T. Volatile Compounds in Meat and Meat Products. Food Sci. Technol. 2017, 37(1), 1–7. DOI: 10.1590/1678-457X.08416.
  • Song, S.; Fan, L.; Xu, X.; Xu, R.; Jia, Q.; Feng, T. Aroma Patterns Characterization of Braised Pork Obtained from a Novel Ingredient by sensory-guided Analysis and gas-chromatography-olfactometry. Foods. 2019, 8(3), 87. DOI: 10.3390/foods8030087.
  • Song, X.; Canellas, E.; Nerin, C. Screening of Volatile Decay Markers of Minced Pork by headspace-solid Phase microextraction–gas chromatography–mass Spectrometry and Chemometrics. Food Chem. 2021, 342, 128341. DOI: 10.1016/j.foodchem.2020.128341.
  • Chen, M.; Chen, T.; Qi, X.; Lu, D.; Chen, B. Analyzing Changes of Volatile Components in Dried Pork Slice by Gas chromatography-ion Mobility Spectroscopy. CyTA - J. Food. 2020, 18(1), 328–335. DOI: 10.1080/19476337.2020.1752805.
  • Chang, Y.; Wang, S.; Chen, H.; Zhang, N.; Sun, J. Characterization of the Key Aroma Compounds in Pork Broth by sensory-directed Flavor Analysis. J. Food Sci. 2021, 86(11), 4932–4945. DOI: 10.1111/1750-3841.15937.
  • Han, D.; Mi, S.; Zhang, C. H.; Li, J.; Song, H. L.; Fauconnier, M. L.; Tyteca, E. Characterization and Discrimination of Chinese Marinated Pork Hocks by Volatile Compound Profiling Using Solid Phase Microextraction Gas chromatography-mass spectrometry/olfactometry, Electronic Nose and Chemometrics. Molecules. 2019, 24(7), 1385. DOI: 10.3390/molecules24071385.
  • Park, S.; Kim, J. C.; Lee, H. S.; Jeong, S. W.; Shim, Y. S. Determination of Five Alcohol Compounds in Fermented Korean Foods via Simple Liquid Extraction with dimethyl-sulfoxide Followed by Gas chromatography-mass Spectrometry for Halal Food Certification. LWT - Food Sci. Technol. 2016, 74, 563–570. DOI: 10.1016/j.lwt.2016.08.030.
  • Šorgić, S.; Ignjatović, I. S.; Antić, M.; Šaćirović, S.; Pezo, L.; Čejić, V.; Đurović, S. Monitoring of the Wines’ Quality by Gas Chromatography: HSS-GC/FID Method Development, Validation, Verification, for Analysis of Volatile Compounds. Fermentation. 2022, 8(2), 38. DOI: 10.3390/fermentation8020038.
  • Xu, M. L.; Yu, Y.; Ramaswamy, H. S.; Zhu, S. M.; Wang, Z.; Tamada, K.; Takumi, T.; Hashimoto, R.; Otani, H.; Pazour, G. J. Characterization of Chinese Liquor Aroma Components during Aging Process and Liquor Age Discrimination Using Gas Chromatography Combined with Multivariable Statistics. Sci. Rep. 2017, 7, 1–9. DOI: 10.1038/srep39671.
  • Qomariyah, R. S.; Roswiem, A. P.; Suseno, D. Analysis of Alcohol Content in A Herbal Medicine of Noni Using Gas Chromatography Method. Int J Halal Res. 2021, 3(1), 1–7.
  • Sours, R. E.; Bezabeh, D. Z. A Static Headspace GC–MS Method for the Determination of Ethanol in Solid or semi-solid Consumer Goods. Food Anal. Methods. 2021, 14(12), 2569–2575. DOI: 10.1007/s12161-021-02090-5.
  • Chan, M.; Sy, H.; Finley, J.; Robertson, J.; Brown, P. N. Determination of Ethanol Content in Kombucha Using Headspace Gas Chromatography with Mass Spectrometry Detection: Single-laboratory Validation. J. AOAC Int. 2021, 104(1), 122–128. DOI: 10.1093/jaoacint/qsaa094.
  • Batista, L. R.; Antoniosi Filho, N. R. Ethanol Content Determination in Medicine Syrups Using Headspace and Multidimensional heart-cut Gas Chromatography Coupled to Mass Spectrometry. J. Braz. Chem. Soc. 2020, 31(2), 394–401. DOI: 10.21577/0103-5053.20190193.