1,974
Views
2
CrossRef citations to date
0
Altmetric
Original Article

A HPLC-ESI-Q-ToF-MS Method for the Analysis of Monomer Constituents in PHGG, Gum Arabic And Psyllium Husk Prebiotic Dietary Fibre Supplements

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1650-1667 | Received 26 Apr 2022, Accepted 25 Jun 2022, Published online: 11 Jul 2022

References

  • Office of Nutrition and Food Labeling. Science Review of Isolated and Synthetic Non-Digestible Carbohydrates; Center for Food Safety and Applied Nutrition, Food and Drug Administration, US Department of Health and Human Services: College Park, MD, USA, 2016. Available online: https://www.fda.gov/food/food-labeling-nutrition/science-review-isolated-and-synthetic-non-digestible-carbohydrates/ (accessed on 1 July 2021).
  • Veronese, N.; Solmi, M.; Caruso, M. G.; Giannelli, G.; Osella, A. R.; Evangelou, E.; Maggi, S.; Fontana, L.; Stubbs, B.; Tzoulaki, I. Dietary Fiber and Health Outcomes: An Umbrella Review of Systematic Reviews and meta-analyses. Am. J. Clin. Nutr 2018, 107(3), 436–444. DOI: 10.1093/ajcn/nqx082.
  • Hervik, A. K.; Svihus, B. The Role of Fiber in Energy Balance. J. Nutr. Metab. 2019, 2019, 4983657. DOI: 10.1155/2019/4983657.
  • National Health and Medical Research Council. Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes; Australian Government Department of Health: Canberra, Australia, 2017. Available online: https://www.nhmrc.gov.au/about-us/publications/nutrient-reference-values-australia-and-new-zealand-including-recommended-dietary-intakes/ (accessed on 31 March 2022).
  • Lattimer, J. M.; Haub, M. D. Effects of Dietary Fiber and Its Components on Metabolic Health. Nutrients. 2010, 2(12), 1266–1289. DOI: 10.3390/nu2121266.
  • Markowiak, P.; Slizewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients. 2017, 9(9), 1021. DOI: 10.3390/nu9091021.
  • Ruppin, H.; Bar-Meir, S.; Soergel, K. H.; Wood, C. M.; Schmitt, M. G. Absorption of Short-Chain Fatty Acids by the Colon. Gastroenterology. 1980, 78(6), 1500–1507. DOI: 10.1016/s0016-5085(19)30508-6.
  • Vinolo, M. A.; Rodrigues, H. G.; Nachbar, R. T.; Curi, R. Regulation of Inflammation by Short Chain Fatty Acids. Nutrients. 2011, 3(10), 858–876. DOI: 10.3390/nu3100858.
  • Parada Venegas, D.; De la Fuente, M. K.; Landskron, G.; Gonzalez, M. J.; Quera, R.; Dijkstra, G.; Harmsen, H. J. M.; Faber, K. N.; Hermoso, M. A. Short Chain Fatty Acids (Scfas)-mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol 2019, 10, 277. DOI: 10.3389/fimmu.2019.00277.
  • den Besten, G.; van Eunen, K.; Groen, A. K.; Venema, K.; Reijngoud, D. J.; Bakker, B. M. The Role of short-chain Fatty Acids in the Interplay between Diet, Gut Microbiota, and Host Energy Metabolism. J. Lipid Res 2013, 54(9), 2325–2340. DOI: 10.1194/jlr.R036012.
  • Reider, S. J.; Moosmang, S.; Tragust, J.; Trgovec-Greif, L.; Tragust, S.; Perschy, L.; Przysiecki, N.; Sturm, S.; Tilg, H.; Stuppner, H., et al. Prebiotic Effects of Partially Hydrolyzed Guar Gum on the Composition and Function of the Human Microbiota-Results from the PAGODA Trial. Nutrients.2020, 12(5), 1257. DOI: 10.3390/nu12051257.
  • Baxter, N. T.; Schmidt, A. W.; Venkataraman, A.; Kim, K. S.; Waldron, C.; Schmidt, T. M. Dynamics of Human Gut Microbiota and Short-Chain Fatty Acids in Response to Dietary Interventions with Three Fermentable Fibers. mBio. 2019Jan29, 10(1), e02566–18. DOI: 10.1128/mBio.02566-18.
  • Tamargo, A.; Cueva, C.; Alvarez, M. D.; Herranz, B.; Moreno-Arribas, M. V.; Laguna, L. Physical Effects of Dietary Fibre on Simulated Luminal Flow, Studied by in Vitro Dynamic Gastrointestinal Digestion and Fermentation. Food Funct 2019, 10, 3452–3465. DOI: 10.1039/c9fo00485h.
  • Chambers, E. S.; Byrne, C. S.; Morrison, D. J.; Murphy, K. G.; Preston, T.; Tedford, C.; Garcia-Perez, I.; Fountana, S.; Serrano-Contreras, J. I.; Holmes, E., et al. Dietary Supplementation with inulin-propionate Ester or Inulin Improves Insulin Sensitivity in Adults with Overweight and Obesity with Distinct Effects on the Gut Microbiota, Plasma Metabolome and Systemic Inflammatory Responses: A Randomised cross-over Trial. Gut.2019, 68(8), 1430–1438. DOI: 10.1136/gutjnl-2019-318424.
  • Glover, D. A.; The effects of dietary supplementation with Gum Arabic on blood pressure and renal function in subjects with Type 2 diabetes mellitus. 2012 (Doctoral dissertation, Cardiff University).
  • Hernandez, M. A. G.; Canfora, E. E.; Jocken, J. W. E.; Blaak, E. E. The Short-Chain Fatty Acid Acetate in Body Weight Control and Insulin Sensitivity. Nutrients. 2019, 11(8), 1943. DOI: 10.3390/nu11081943.
  • Babiker, R.; Elmusharaf, K.; Keogh, M. B.; Saeed, A. M. Effect of Gum Arabic (Acacia Senegal) Supplementation on Visceral Adiposity Index (VAI) and Blood Pressure in Patients with Type 2 Diabetes Mellitus as Indicators of Cardiovascular Disease (CVD): A Randomized and placebo-controlled Clinical Trial. Lipids Health Dis. 2018, 17(1), 56. DOI: 10.1186/s12944-018-0711-y.
  • Cuomo, R.; Cuomo, R.; Zito, F. P.; Savino, I. G.; Savino, I. G.; Sarnelli, G.; Cuomo, R. Partially Hydrolyzed Guar Gum in the Treatment of Irritable Bowel Syndrome with Constipation: Effects of Gender, Age, and Body Mass Index. Saudi J. Gastroenterol 2015, 21(2), 104–110. DOI: 10.4103/1319-3767.153835.
  • El-Salhy, M.; Ystad, S. O.; Mazzawi, T.; Gundersen, D. Dietary Fiber in Irritable Bowel Syndrome (Review). Int. J. Mol. Med 2017, 40(3), 607–613. DOI: 10.3892/ijmm.2017.3072.
  • Niv, E.; Halak, A.; Tiommny, E.; Yanai, H.; Strul, H.; Naftali, T.; Vaisman, N. Randomized Clinical Study: Partially Hydrolyzed Guar Gum (PHGG) versus Placebo in the Treatment of Patients with Irritable Bowel Syndrome. Nutr. Metab. (Lond). 2016, 13(1), 10. DOI: 10.1186/s12986-016-0070-5.
  • Moayyedi, P.; Quigley, E. M.; Lacy, B. E.; Lembo, A. J.; Saito, Y. A.; Schiller, L. R.; Soffer, E. E.; Spiegel, B. M.; Ford, A. C. The Effect of Fiber Supplementation on Irritable Bowel Syndrome: A Systematic Review and meta-analysis. Am. J. Gastroenterol 2014, 109(9), 1367–1374. DOI: 10.1038/ajg.2014.195.
  • McRorie, J. W., Jr. Evidence-Based Approach to Fiber Supplements and Clinically Meaningful Health Benefits, Part 1: What to Look for and How to Recommend an Effective Fiber Therapy. Nutr. Today 2015, 50(2), 82–89. DOI: 10.1097/NT.0000000000000082.
  • McRorie, J. W., Jr.; McKeown, N. M. Understanding the Physics of Functional Fibers in the Gastrointestinal Tract: An Evidence-Based Approach to Resolving Enduring Misconceptions about Insoluble and Soluble Fiber. J. Acad. Nutr. Diet 2017, 117(2), 251–264. DOI: 10.1016/j.jand.2016.09.021.
  • Singh, R.; Zogg, H.; Ro, S. Role of microRNAs in Disorders of Gut-Brain Interactions: Clinical Insights and Therapeutic Alternatives. J. Pers. Med 2021, 11(10), 1021. DOI: 10.3390/jpm11101021.
  • Zikos, T. A.; Kamal, A. N.; Neshatian, L.; Triadafilopoulos, G.; Clarke, J. O.; Nandwani, M.; Nguyen, L. A. High Prevalence of Slow Transit Constipation in Patients with Gastroparesis. J. Neurogastroenterol. Motil 2019, 25(2), 267–275. DOI: 10.5056/jnm18206.
  • Parkman, H. P.; Yates, K. P.; Hasler, W. L.; Nguyan, L.; Pasricha, P. J.; Snape, W. J.; Farrugia, G.; Calles, J.; Koch, K. L.; Abell, T. L., et al. Dietary Intake and Nutritional Deficiencies in Patients with Diabetic or Idiopathic Gastroparesis. Gastroenterology.2011, 141(2), 486–498, 498 e481–487. DOI: 10.1053/j.gastro.2011.04.045.
  • Suresh, H.; Ho, V.; Zhou, J. Rheological Characteristics of Soluble Fibres during Chemically Simulated Digestion and Their Suitability for Gastroparesis Patients. Nutrients. 2020Aug17, 12(8), 2479. DOI: 10.3390/nu12082479.
  • Suresh, H.; Zhou, J.; Ho, V. The Short-Term Effects and Tolerability of Low-Viscosity Soluble Fibre on Gastroparesis Patients: A Pilot Clinical Intervention Study. Nutrients. 2021Nov28, 13(12), 4298. DOI: 10.3390/nu13124298.
  • Fak, F.; Jakobsdottir, G.; Kulcinskaja, E.; Marungruang, N.; Matziouridou, C.; Nilsson, U.; Stalbrand, H.; Nyman, M. The physico-chemical Properties of Dietary Fibre Determine Metabolic Responses, short-chain Fatty Acid Profiles and Gut Microbiota Composition in Rats Fed Low- and high-fat Diets. PLoS One. 2015, 10(5), e0127252. DOI: 10.1371/journal.pone.0127252.
  • Gamage, H.; Tetu, S. G.; Chong, R. W. W.; Bucio-Noble, D.; Rosewarne, C. P.; Kautto, L.; Ball, M. S.; Molloy, M. P.; Packer, N. H.; Paulsen, I. T. Fiber Supplements Derived from Sugarcane Stem, Wheat Dextrin and Psyllium Husk Have Different in Vitro Effects on the Human Gut Microbiota. Front Microbiol 2018, 9, 1618. DOI: 10.3389/fmicb.2018.01618.
  • Wright, E. M. I. Glucose galactose malabsorption. Am J Physiol-Gastrointestinal Liver Physiol Nov 1, 1998, 275(5), G879–82. DOI: 10.1152/ajpgi.1998.275.5.G879.
  • Shi, L. Bioactivities, Isolation and Purification Methods of Polysaccharides from Natural Products: A Review. Int. J. Biol. Macromol 2016, 92, 37–48. DOI: 10.1016/j.ijbiomac.2016.06.100.
  • Guo, N.; Bai, Z.; Jia, W.; Sun, J.; Wang, W.; Chen, S.; Wang, H. Quantitative Analysis of Polysaccharide Composition in Polyporus Umbellatus by HPLC-ESI-TOF-MS. Molecules. 2019, 24(14), 2526. DOI: 10.3390/molecules24142526.
  • Wu, X.; Jiang, W.; Lu, J.; Yu, Y.; Wu, B. Analysis of the Monosaccharide Composition of water-soluble Polysaccharides from Sargassum Fusiforme by High Performance Liquid chromatography/electrospray Ionisation Mass Spectrometry. Food Chem 2014, 145, 976–983. DOI: 10.1016/j.foodchem.2013.09.019.
  • Ai, Y.; Yu, Z.; Chen, Y.; Zhu, X.; Ai, Z.; Liu, S.; Ni, D. Rapid Determination of the Monosaccharide Composition and Contents in Tea Polysaccharides from Yingshuang Green Tea by Pre-Column Derivatization HPLC. J. Chem 2016, 2016, 1–5. DOI: 10.1155/2016/6065813.
  • Xu, W.; Liang, L.; Zhu, M. Determination of Sugars in Molasses by HPLC following Solid-Phase Extraction. Int. J. Food Prop 2014, 18(3), 547–557. DOI: 10.1080/10942912.2013.837064.
  • Weiß, K.; Alt, M. Determination of Single Sugars, Including Inulin, in Plants and Feed Materials by High-Performance Liquid Chromatography and Refraction Index Detection. Fermentation. 2017, 3(3), 36. DOI: 10.3390/fermentation3030036.
  • Barzen-Hanson, K. A.; Wilkes, R. A.; Aristilde, L. Quantitation of Carbohydrate Monomers and Dimers by Liquid Chromatography Coupled with high-resolution Mass Spectrometry. Carbohydr. Res 2018, 468, 30–35. DOI: 10.1016/j.carres.2018.08.007.
  • Black, I.; Heiss, C.; Azadi, P. Comprehensive Monosaccharide Composition Analysis of Insoluble Polysaccharides by Permethylation to Produce Methyl Alditol Derivatives for Gas Chromatography/Mass Spectrometry. Anal. Chem 2019, 91(21), 13787–13793. DOI: 10.1021/acs.analchem.9b03239.
  • Xia, Y. G.; Sun, H. M.; Wang, T. L.; Liang, J.; Yang, B. Y.; Kuang, H. X. A Modified GC-MS Analytical Procedure for Separation and Detection of Multiple Classes of Carbohydrates. Molecules. 2018, 23(6), 1284. DOI: 10.3390/molecules23061284.
  • Ruiz-Matute, A. I.; Hernandez-Hernandez, O.; Rodriguez-Sanchez, S.; Sanz, M. L.; Martinez-Castro, I. Derivatization of Carbohydrates for GC and GC-MS Analyses. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci 2011, 879(17–18), 1226–1240. DOI: 10.1016/j.jchromb.2010.11.013.
  • Zhang, L.; Reddy, N.; Koyyalamudi, S. R. Isolation, Characterization, and Biological Activities of Polysaccharides from Medicinal Plants and Mushrooms. Studi. Nat. Prod. Chem 2014Jan1, 42, 117–151. DOI: 10.1016/b978-0-444-63281-4.00005-7.
  • Jones, T. M.; Albersheim, P. A Gas Chromatographic Method for the Determination of Aldose and Uronic Acid Constituents of Plant Cell Wall Polysaccharides. Plant Physiol Jun 49, 1972, 6(6), 926–936. DOI: 10.1104/pp.49.6.926.
  • Guttman, A.; Pritchett, T. Capillary Gel Electrophoresis Separation of High‐mannose Type Oligosaccharides Derivatized by 1‐aminopyrene‐3, 6, 8‐trisulfonic Acid. Electrophoresis. 1995, 16(1), 1906–1911. DOI: 10.1002/elps.11501601314.
  • Rizelio, V. M.; Tenfen, L.; da Silveira, R.; Gonzaga, L. V.; Costa, A. C.; Fett, R. Development of a Fast Capillary Electrophoresis Method for Determination of Carbohydrates in Honey Samples. Talanta. 2012, 93, 62–66. DOI: 10.1016/j.talanta.2012.01.034.
  • Bischel, M. D.; Austin, J. H.; Kemeny, M. D.; Hubble, C. M.; Lear, R. K. Separation and Identification of Acid Polysaccharides by thin-layer Chromatography. J. Chromatogr. A. 1966Jan1, 21, 40–45. DOI: 10.1016/S0021-9673(01)91258-0.
  • Iinuma, F.; Hiraga, Y.; Kinoshita, T.; Watanabe, M. Simultaneous Fluorometric and Colorimetric Detection of Carbohydrates on Silica Gd Plates Using o-Aminobenzenesulfonic Acid. Chem. Pharm. Bull. 1979, 27(5), 1268–1271. DOI: 10.1248/cpb.27.1268.
  • Gauch, R.; Leuenberger, U.; Baumgartner, E. Quantitative Determination of Mono-, di-and Trisaccharides by thin-layer Chromatography. J. Chromatogr. A. 1979Jun 1, 174(1), 195–200. DOI: 10.1016/S0021-9673(00)87050-8.
  • Bounias, M. N-(1-Naphthyl) Ethylenediamine Dihydrochloride as a New Reagent for Nanomole Quantification of Sugars on thin-layer Plates by a Mathematical Calibration Process. Anal. Biochem 1980Aug 1, 106(2), 291–295. DOI: 10.1016/0003-2697(80)90523-0.
  • Tihomirova, K.; Dalecka, B.; Mezule, L. Application of Conventional HPLC RI Technique for Sugar Analysis in Hydrolysed Hay. Agron. Res 2016, 14(5), 1713–1719.
  • Sławińska, A.; Jabłońska-Ryś, E.; Stachniuk, A. High-Performance Liquid Chromatography Determination of Free Sugars and Mannitol in Mushrooms Using Corona Charged Aerosol Detection. Food Anal. Methods. 2020, 14(2), 209–216. DOI: 10.1007/s12161-020-01863-8.
  • Crha, T.; Pazourek, J. Rapid HPLC Method for Determination of Isomaltulose in the Presence of Glucose, Sucrose, and Maltodextrins in Dietary Supplements. Foods. 2020, 9(9), 1164. DOI: 10.3390/foods9091164.
  • Thacker, J. B.; Schug, K. A. Quantitative Determination of Fructose, Glucose, and Sucrose in Hard Ciders and Apple Juice by LC–MS/MS. Sep. Sci. Plus. 2020, 3(7), 286–293. DOI: 10.1002/sscp.202000033.
  • Wang, Q. C.; Zhao, X.; Pu, J. H.; Luan, X. H. Influences of Acidic Reaction and Hydrolytic Conditions on Monosaccharide Composition Analysis of Acidic, Neutral and Basic Polysaccharides. Carbohydr. Polym 2016, 143, 296–300. DOI: 10.1016/j.carbpol.2016.02.023.
  • Wang, W.; Optimization of HPLC Detection of PMP Derivatives of Carbohydrates. 2017 (Masters dissertation, Clemson University).
  • Bailly, C.; Hecquet, P. E.; Kouach, M.; Thuru, X.; Goossens, J. F. Chemical Reactivity and Uses of 1-phenyl-3-methyl-5-pyrazolone (PMP), Also Known as Edaravone. Bioorg. Med. Chem 2020, 28, 115463. DOI: 10.1016/j.bmc.2020.115463.
  • Honda, S.; Iwase, S.; Makino, A.; Fujiwara, S. Simultaneous Determination of Reducing Monosaccharides by Capillary Zone Electrophoresis as the Borate Complexes of N-2-pyridylglycamines. Anal. Biochem 1989Jan 1, 176(1), 72–77.
  • Shen, X.; Perreault, H. Characterization of Carbohydrates Using a Combination of Derivatization, high-performance Liquid Chromatography and Mass Spectrometry. J. Chromatogr. A. 1998Jun 19, 811(1–2), 1–2, 47–59. DOI: 10.1016/S0021-9673(98)00238-6.
  • Jeong, S. Characteristics of anti-complementary Biopolymer Extracted from Coriolus Versicolor. Carbohydr. Polym 2004, 55(3), 255–263. DOI: 10.1016/j.carbpol.2003.09.012.
  • Jones, A. S.; Marsh, G. E. The Deproteinisation of Nucleoproteins. Biochim. Biophys. Acta. 1954Jan 1, 14, 559–566. DOI: 10.1016/0006-3002(54)90236-X.
  • Byrne, D. Commission Decision of 12 August 2002 Implementing Council Directive 96/23/EC Concerning the Performance of Analytical Methods and the Interpretation of Result. Off J Eur Commun 2002, 1(L221), 8–36.
  • Eichholz, G. G.; Nagel, A. E.; Hughes, R. B. Adsorption of Ions Dilute Aqueous Solutions on Glass and Plastic Surfaces. Anal. Chem 1965Jun1, 37(7), 863–868. DOI: 10.1021/ac60226a020.
  • Yoon, S. J.; Chu, D. C.; Raj Juneja, L. Chemical and Physical Properties, Safety and Application of Partially Hydrolized Guar Gum as Dietary Fiber. J. Clin. Biochem. Nutr. 2008, 42(1), 1–7. DOI: 10.3164/jcbn.2008001.
  • Nie, S.-P.; Wang, C.; Cui, S. W.; Wang, Q.; Xie, M.-Y.; Phillips, G. O. A Further Amendment to the Classical Core Structure of Gum Arabic (Acacia Senegal). Food Hydrocolloids. 2013, 31(1), 42–48. DOI: 10.1016/j.foodhyd.2012.09.014.
  • Qaisrani, T. B.; Qaisrani, M. M.; Qaisrani, T. M. Arabinoxylans from Psyllium Husk: A Review. J. Environ. Agric. Sci 2016, 6, 33–39.
  • Fu, X.; Li, R.; Zhang, T.; Li, M.; Mou, H. Study on the Ability of Partially Hydrolyzed Guar Gum to Modulate the Gut Microbiota and Relieve Constipation. J. Food Biochem 2019, 43(2), e12715. DOI: 10.1111/jfbc.12715.
  • Wang, Y.; Liu, Y.; Ivusic Polic, I.; Chandran Matheyambath, A.; LaPointe, G. Modulation of Human Gut Microbiota Composition and Metabolites by Arabinogalactan and Bifidobacterium Longum Subsp. Longum BB536 in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). J. Funct. Foods. 2021, 87, 104820. DOI: 10.1016/j.jff.2021.104820.
  • Pereira, G. V.; Abdel-Hamid, A. M.; Dutta, S.; D’Alessandro-Gabazza, C. N.; Wefers, D.; Farris, J. A.; Bajaj, S.; Wawrzak, Z.; Atomi, H.; Mackie, R. I., et al. Degradation of Complex Arabinoxylans by Human Colonic Bacteroidetes. Nat. Commun 2021, 12(1), 459. DOI: 10.1038/s41467-020-20737-5.