1,280
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Yam pectin and textural characteristics: a preliminary study

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1591-1603 | Received 08 May 2022, Accepted 26 Jun 2022, Published online: 05 Jul 2022

References

  • Lara-espinoza, C.; Carvajal-Millán, E.; Balandrán-Quintana, R.; López-Franco, Y.; Rascón-Chu, A. N. S. Pectin and Pectin-Based Composite Materials: Beyond Food Texture. Molecules. 2018, 23(4), 942. DOI: 10.3390/molecules23040942.
  • Willats, W. G.; McCartney, L.; Mackie, W.; Knox, P. J. Pectin: Cell Biology and Prospects for Functional Analysis. Plant Mol. Biol. 2001, 47(1/2), 9–27. DOI: 10.1023/A:1010662911148.
  • Gawkowska, D.; Cybulska, J.; Zdunek, A. Structure-related Gelling of Pectins and Linking with Other Natural Compounds : A Review. Polymers. 2018, 10(7), 762. (Basel). DOI: 10.3390/polym10070762.
  • Otegbayo, B.; Folake, O. S.; Adetunji, K.; Sangoymi, T. E.; Okonkwo, C. C. Perception of Food Quality in Yams among Some Nigerian Farmers. Afr. J. Food Sci. 2010, 4(8), 541–549.
  • Ross, H. A.; Morris, W. L.; Ducreux, L. J. M.; Hancock, R. D.; Verrall, S. R.; Morris, J. A.; Tucker, G. A.; Stewart, D.; Hedley, P. E.; McDougall, G. J., et al. Pectin Engineering to Modify Product Quality in Potato. Plant Biotechnol. J. 2011, 9(8), 848–856. DOI: 10.1111/j.1467-7652.2011.00591.x.
  • White, P. J.; Broadley, M. R. Biofortifying Crops with Essential Mineral Elements. Trends Plant Sci. Elsevier Current Trends. 2005, 10(12), 586–593. DOI:10.1016/j.tplants.2005.10.001.
  • Murayama, D.; Koaze, H.; Ikeda, S.; Palta, J. P.; Kasuga, J.; Pelpolage, S. W.; Yamauchi, H.; Tani, M. In-season Calcium Fertilizer Application Increases Potato Cell Wall Calcium and Firmness of French Fries. Am. J. Potato Res. 2019, 96(5), 472–486. DOI: 10.1007/s12230-019-09736-5.
  • Hrabovska, O.; Pastukh, H.; Lysyi, O.; Miroshnyk, V.; Shtangeeva, N. The Use of Enzyme Preparations for Pectin Extraction from Potato Pulp. Ukr. Food J. 2018, 7(2), 215–243. DOI: 10.24263/2304-974X-2018-7-2-5.
  • Zaidel, A. D. N.; Hamidon, N. H.; Mat Zahir, N. Extraction and Characterization of Pectin from Sweet Potato (Ipomoea Batatas) Peels Using Alkaline Extraction Method. Acta Hortic. 2017, (1152), 211–218. DOI: 10.17660/actahortic.2017.1152.29.
  • Yang, J. S.; Mu, T. H.; Ma, M. M. Extraction, Structure, and Emulsifying Properties of Pectin from Potato Pulp. Food Chem. 2018, 1(244), 197–205. DOI: 10.1016/j.foodchem.2017.10.059.
  • Akissoe, N.; Mestres, C.; Handschin, S.; Gibert, O.; Hounhouigan, J.; Nago, M. Microstructure and physico-chemical Bases of Textural Quality of Yam Products. LWT - Food Sci. Technol. 2011, 44(1), 321–329. DOI: 10.1016/j.lwt.2010.06.016.
  • Girma, E., and Worku, T. Extraction and Characterization of Pectin from Selected Fruit Peel Waste. Int. J. Sci. Res. Publ. 2016, 6(2), 447–454.
  • Ralet, M. C.; André-Leroux, G.; Quéméner, B.; Thibault, J.-F. Sugar Beet (Beta Vulgaris) Pectins are Covalently cross-linked through Diferulic Bridges in the Cell Wall. Phytochemistry. 2005, 66(24), 2800–2814. DOI: 10.1016/j.phytochem.2005.09.039.
  • Kliemann, E.; De Simas, K. N.; Amante, E. R.; Prudêncio, E. S.; Teófilo, F. R.; Ferreira, M. M. C.; Amboni, R. D. M. C. Optimisation of Pectin Acid Extraction from Passion Fruit Peel (Passiflora Edulis Flavicarpa) Using Response Surface Methodology. Int. J. Food Sci. Technol. 2009, 44(3), 476–483. DOI: 10.1111/j.1365-2621.2008.01753.x.
  • Turquois, T.; Rinaudo, M.; Taravel, F. R.; Hayraud, A. Extraction of Highly Gelling Pectic Substances from Sugar Beet Pulp and Potato Pulp: Influence on Extrinsic Parameters on Their Gelling Properties. Food Hydrocolloids. 1999, 13(3), 255–262. DOI: 10.1016/S0268-005X(99)00007-7.
  • Hamidon, N. H.; Zaidel, D. N. A. Effect of Extraction Conditions on Pectin Yield Extracted from Sweet Potato Peels Residues Using Hydrochloric Acid. Chem. Eng. Trans. 2017, 56, 979–984. DOI: 10.3303/CET1756164.
  • Thermo Fisher Scientifics. Matrix spiking-Why Spike and How to Do It. (Environmental and Process Instruments Division (EPD). 2011. www.thermoscientific.com/waterlibrary. [Accessed: 21 September, 2018].
  • Sajeev, M. S.; Sreekumar, J.; Moorthy, S. N.; Suja, G.; Shanavas, S. Texture Analysis of Raw and Cooked Tubers of Short Duration Lines of Cassava by Multivariate and Fractional Conversion Techniques. J. Sci. Food Agric. 2008, 88(4), 569–580. DOI: 10.1002/jsfa.3055.
  • Ignacio, R. M.; Lannes, S. C. Rheological Characterization and Texture of Commercial Mayonnaise Using Back Extrusion. Afr. J. Agric. Res. 2013, 8, 4262–4268. DOI: 10.5897/AJAR12.485.
  • Nurdjanah, S.; Hook, J.; Paon, J.; Paterson, J. Galacturonic Acid Content and Degree of Esterification of Pectin from Sweet Potato Starch Residue Detected Using 13 C CP/MAS Solid State NMR. Eur. Food Res. Technol. 2013, 3(1), pp. 16–37. https://journalenjnfs.com/index.php/EJNFS/article/view/27018
  • Salvador, L. D.; Suganuma, T.; Kitahara, K.; Fukushige, Y.; Tanoue, H. Degradation of Cell Wall Materials from Sweetpotato, Cassava, and Potato by a Bacterial Protopectinase and Terminal Sugar Analysis of the Resulting Solubilized Products. J. Biosci. Bioeng. 2002, 93(1), 64–72. DOI: 10.1016/S1389-1723(02)80056-1.
  • Jarvis, M. C. Plant Cell Walls: Supramolecular Assemblies. Food Hydrocoll. 2011, 25(2), 257–262. DOI: 10.1016/j.foodhyd.2009.09.010.
  • Waldron, K.; Parker, M. L.; Smith, A. Plant Cell Walls and Food Quality. Compr. Rev. Food Sci. Food Saf. 2003, 2(4), 101–119. DOI: 10.1111/j.1541-4337.2003.tb00019.x.
  • Ramirez, J. E. G.; Garcia, Y. R. Yam’s Potential as Basis of Nutritional Security Programs in Underdeveloped Tropical Regions. Biomed. J. Sc. & Tech. 2019, 20(4). DOI: 10.26717/BJSTR.2019.20.003474
  • Zhang, C.; Mu, T. Optimization of Pectin Extraction from Sweet Potato (Ipomoea Batatas, Convolvulaceae) Residues with Disodium Phosphate Solution by Response Surface Method. Int. J. Food Sci. Technol. 2011, 46(11), 2274–2280. DOI: 10.1111/j.1365-2621.2011.02746.x.
  • Yang, J. S.; Mu, T. H.; Ma, M. M. Extraction, Structure, and Emulsifying Properties of Pectin from Potato Pulp. Food Chem. 2018, 244, 197–205. DOI: 10.1016/j.foodchem.2017.10.059.
  • Sundar Raj, A. A.; Rubila, S.; Ayabalan, R., and Ranganathan, T. V. A Review on Pectin: Chemistry Due to General Properties of Pectin and Its Pharmaceutical Uses. Open Access Scientific Reports. 2012, 1, 550. doi:10.4172/scientificreports.550.
  • Ayora-Talavera, T. D. R.; Ramos-Chan, C. A.; Covarrubias-Cárdenas, A. G.; Sánchez-Contreras, A.; Garćia-Cruz, U.; Pacheco, N. A. L. Evaluation of Pectin Extraction Conditions and Polyphenol Profile from Citrus X Lantifolia Waste: Potential Application as Functional Ingredients. Agriculture. 2017, 7(28), 28. DOI: 10.3390/agriculture7030028.
  • Levigne, S.; Ralet, M. C.; Thibault, J. F. Characterisation of Pectins Extracted from Fresh Sugar Beet under Different Conditions Using an Experimental Design. Carbohydr. Polym. 2002, 49(2), 145–153. DOI: 10.1016/s0144-8617(01)00314-9.
  • Kurita, O.; Fujiwara, T.; Yamazaki, E. Characterization of the Pectin Extracted from Citrus Peel in the Presence of Citric Acid. Carbohydr. Polym. 2008, 74(3), 725–730. DOI: 10.1016/j.carbpol.2008.04.033.
  • Yapo, B. M. Biochemical Characteristics and Gelling Capacity of Pectin from Yellow Passion Fruit Rind as Affected by Acid Extractant Nature. J. Agric. Food Chem. 2009, 57(4), 1572–1578. DOI: 10.1021/jf802969m.
  • Zaidel, D. N. A.; Zainudin, N. N.; Jusoh, Y. M. M.; Muhamad, I. I. Extraction and Characterisation of Pectin from Sweet Potato (Ipomoea Batatas) Pulp, J. Eng. Sci. Tech., Special Issue on SOMCHE 2014 & RSCE 2014 Conference, 2015, 22–29.
  • Takamine, K.; Abe, J. I.; Shimono, K. Physicochemical and Gelling Characterizations of Pectin Extracted from Sweet Potato Pulp. J. of appl. glycosci. 2007, 54(4), 211–216. DOI:10.5458/jag.54.211.
  • Wells, M. J. M. Principles of Extraction, Sample Preparation Techniques in Analytical Chemistry; John Wiley & Sons: New Jersey, 2003; pp 37–57.
  • Thakur, B. R.; Singh, R. K.; Handa, A. K.; Rao, M. A. Chemistry and Uses of pectin—A Review. Crit. Rev. Food Sci. Nutr. 1997, 37(1), 47–73. DOI: 10.1080/10408399709527767.
  • Picot-Allain, M. C. N.; Ramasawmy, B.; Emmambux, M. N. Extraction, Characterization and Application of Pectin from Tropical and sub-tropical Fruits: A Review. Food Rev. Int. 2020, 1–31. DOI: 10.1080/87559129.2020.1733008.
  • Silva, E. M.; Rogez, H.; Larondelle, Y. Optimization of Extraction of Phenolics from Inga Edulis Leaves Using Response Surface Methodology. Sep. Purif. Technol. 2007, 55(3), 381–387. DOI: 10.1016/j.seppur.2007.01.008.
  • Stalikas, C. D. Extraction, Separation, and Detection Methods for Phenolic Acids and Flavonoids. J. Sep. Sci. 2007, 30(18), 3268–3295. DOI: 10.1002/jssc.200700261.
  • Smeraglia, J.; Baldrey, S. F.; Watson, D. Matrix Effects and Selectivity Issues in LC-MS-MS. Chromatographia. 2002, 55(S1), S95–S99. DOI: 10.1007/bf02493363.
  • Sriamornsak, P. Chemistry of Pectin and Its Pharmaceutical Uses : A Review. 2003. http://www.thaiscience.info/Journals/Article/SUIJ/10559523.pdf (Accessed: 16 December 2020).
  • Ishii, T. O-acetylated Oligosaccharides from Pectins of Potato Tuber Cell Walls. Plant Physiol. 1997, 113(4), 1265–1272. DOI: 10.1104/pp.113.4.1265.
  • Ralet, M. C.; André-Leroux, G.; Quéméner, B.; Thibault, J.-F. Sugar Beet (Beta Vulgaris) Pectins are Covalently cross-linked through Diferulic Bridges in the Cell Wall. Phytochemistry. 2005, 66(24), 2800–2814. DOI: 10.1016/j.phytochem.2005.09.039.
  • Sengkhamparn, N.; Verhoef, R.; Schols, H. A.; Sajjaanantakul, T.; Voragen, A. G. J. Characterisation of Cell Wall Polysaccharides from Okra (Abelmoschus Esculentus (L.) Moench). Carbohydr. Res. 2009, 344(14), 1824–1832. DOI: 10.1016/j.carres.2008.10.012.
  • Aidoo, R. An Analysis of Yam Consumption Patterns in Ghanaian Urban Communities. Doctoral Thesis, 2009 March, p.191.
  • Barlagne, C.; Cornet, D.; Blazy, J. M.; Diman, J. M.; Lafontaine, H. O. Consumers’ Preferences for Fresh Yam: A Focus Group Study. Food Sci. Nutr. 2017, 5(1), 54–66. DOI: 10.1002/fsn3.364.
  • Ukpabi, U. J.; Omodamiro, R. M.; Ikeorgu, J. G.; Asiedu, R. Sensory Evaluation of Amala from Improved Water Yam (Dioscorea Alata) Genotypes in Nigeria. Afr. J. Biotechnol. 2008, 7(8), 1134–1138. DOI: 10.5897/AJB07.616.
  • Wireko-Manu, F. D.; Oduro, I.; Ellis, W. O.; Asiedu, R.; Maziya-Dixon, B. Food Quality Changes in Water Yam (Dioscorea Alata) during Growth and Storage. Asian J. Agric. Food Sci. 2013, 1(3).
  • Polycarp, D. Textural Characteristics of Seven Different Yams (Dioscorea Species) Grown and Consumed in Ghana. Int J Sci Technol Res. 2017, 4(8), 281–284.
  • Jolie, R. P.; Christiaens, S.; De Roeck, A.; Fraeye, I.; Houben, K.; Van Buggenhout, S.; Van Loey, A. M.; Hendrickx, M. E. G. Pectin Conversions under High Pressure: Implications for the structure-related Quality Characteristics of plant-based Foods. Trends Food Sci. Technol. 2012, 24(2), 103–118. DOI: 10.1016/j.tifs.2011.11.003.
  • Brett, C.; Waldron, K. Physiology and Biochemistry of Plant Cell Walls, 2nd; Black Mac, B. editor; Chapman & Hall: Cambridge, MA, USA, 1996.
  • Binner, S.; Jardine, W. G.; Renard, C. M. C. G.; Jarvis, M. C. Cell Wall Modifications during Cooking of Potatoes and Sweet Potatoes. J. Sci. Food Agric. 2000, 80(2), 216–218. DOI: 10.1002/(SICI)1097-0010(20000115)80:2<216::AID-JSFA507>3.0.CO;2-6.
  • Ishii, K.; Teramoto, H.; Kuwada, Y.; Jibu, M.; Tabuchi, M.; Fuchigami, M. Relationship between Pectic Substances and Strand Separation of Cooked Spaghetti Squash. J. Food Sci. Engineering. 2015, 4, 176–183.