940
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Purification and ultra-high-performance liquid chromatography tandem mass spectrometry analysis of phenolics extracted from male walnut flowers

, , , , , , & show all
Pages 1792-1803 | Received 25 May 2022, Accepted 25 Jul 2022, Published online: 02 Aug 2022

References

  • Soumya R. P. Sandeep S. R. Rubeka I. Vasudha S. Payel G. A review on nutritional, bioactive, toxicological properties andpreservation of edible flowers. Future Foods. 2021,4,100078, https://doi.org/10.1016/j.fufo.2021.100078
  • Osmont, M. N. L.; Cuggia, M.; Polard, E.; Riou, C.; Balusson, F.; Oger, E., et al. Utilisation du PMSI Pour la Détection D’effets Indésirables Médicamenteux. [Use of the PMSI for the Detection of Adverse Drug Reactions]. Thérapie.2013, 68(4), 285–295. DOI: 10.2515/therapie/2013042.
  • De Paepe, D.; Coudijzer, K.; Noten, B.; Valkenborg, D.; Servaes, K.; De Loose, M.; Diels, L.; Voorspoels, S.; Van Droogenbroeck, B., et al. A Comparative Study between spiral-filter Press and Belt Press Implemented in A Cloudy Apple Juice Production Process. Food Chem. 2015, 173, 986–996. DOI: 10.1016/j.foodchem.2014.10.019.
  • Ma, L.; Waterhouse, A. L. Flavanols React Preferentially with Quinones through an Electron Transfer Reaction, Stimulating Rather than Preventing Wine Browning. Anal. Chim. Acta. 2018, 1039, 162–171. DOI: 10.1016/j.aca.2018.07.013.
  • Li, H.; Guo, A.; Wang, H., et al. Mechanisms of Oxidative Browning of Wine. Food Chem. 2007, 108(1), 1–13. DOI: 10.1016/j.foodchem.2007.10.065.
  • Azahara, L.; Manuel, M.; Merida, J.; Medina, M., et al. Yeast-induced Inhibition of (+)-catechin and (-)-epicatechin Degradation in Model Solutions. J. Agric. Food. Chem. 2002, 50(6), 1631–1635. DOI: 10.1021/jf0109930.
  • Fiore, M.; Messina, M. P.; Petrella, C.; D’Angelo, A.; Greco, A.; Ralli, M.; Ferraguti, G.; Tarani, L.; Vitali, M.; Ceccanti, M., et al. Antioxidant Properties of Plant Polyphenols in the Counteraction of alcohol-abuse Induced Damage: Impact on the Mediterranean Diet. J. Funct. Foods 2020, 71, 104012. DOI: 10.1016/j.jff.2020.104012.
  • Russo, G. L.; Spagnuolo, C.; Russo, M.; Tedesco, I.; Moccia, S.; Cervellera, C., et al. Mechanisms of Aging and Potential Role of Selected Polyphenols in Extending Healthspan. Biochem. Pharmacol. 2020, 173, 113719. DOI: 10.1016/j.bcp.2019.113719.
  • Xie, P.; Huang, L.; Zhang, C.-H.; Zhang, Y.-L., et al. Phenolic Compositions, and Antioxidant Performance of Olive Leaf and Fruit (Olea Europaea L.) Extracts and Their structure-activity Relationships. J. Funct. Foods 2015, 16, 460–471. DOI: 10.1016/j.jff.2015.05.005.
  • Mcdonald, P. D.; Hamilton, G. A. “On the Mechanism of Phenolic Oxidative Coupling Reactions. Ferricyanide Oxidation of 2,3′,4-trihydroxybenzophenone, an Example of a Radical Aromatic Substitution Mechanism. J. Am. Chem. Soc. 1973, 95(23), 7752–7758. DOI: 10.1002/chin.197404142.
  • Zhang, Y.; Kan, H.; Chen, S.-X.; Thakur, K.; Wang, S.; Zhang, J.-G.; Shang, Y.-F.; Wei, Z.-J., et al. Comparison of Phenolic Compounds Extracted from Diaphragma Juglandis Fructus, Walnut Pellicle, and Flowers of Juglans Regia Using Methanol, Ultrasonic Wave, and Enzyme assisted-extraction. Food Chem. 2020, 321, 126672. DOI: 10.1016/j.foodchem.2020.126672.
  • Xiong, N.; Yu, R.; Chen, T.; Xue, Y.-P.; Liu, Z.-Q.; Zheng, Y.-G., et al. Separation and Purification of l-methionine from E.coli Fermentation Broth by Macroporous Resin Chromatography. J. Chromatogr. B 2019, 1110-1111, 108–115. DOI: 10.1016/j.jchromb.2019.02.016.
  • Hou, M.; Hu, W.; Xiu, Z.; Shi, Y.; Hao, K.; Cao, D.; Guan, Y.; Yin, H., et al. Efficient Enrichment of Total Flavonoids from Pteris Ensiformis Burm. Extracts by Macroporous Adsorption Resins and in Vitro Evaluation of Antioxidant and Antiproliferative Activities. J. Chromatogr. B 2020, 1138, 121960. DOI: 10.1016/j.jchromb.2019.121960.
  • AlFaris, N. A.; Wabaidur, S. M.; Alothman, Z. A.; Altamimi, J. Z.; Aldayel, T. S., et al. Fast and Efficient Immunoaffinity Column Cleanup and Liquid chromatography-tandem Mass Spectrometry Method for the Quantitative Analysis of Aflatoxins in Baby Food and Feeds. J. Sep. Sci. 2020, 43(11), 2079–2087. DOI: 10.1002/jssc.201901307.
  • AlFarisa, N. A.; ALTamimia, J. Z.; ALOthman, Z. A.; Wabaidur, S. M.; Ghafar, A. A.; Saleh Aldayel, T., et al. Development of a Sensitive liquid-liquid Extraction and ultra-performance Liquid chromatography-tandem Mass Spectrometry Method for the Analysis of Carbaryl Residues in Fresh Vegetables Sold in Riyadh. J. King Saud Univ. Sci. 2020, 32(4), 2414–2418. DOI: 10.1016/j.jksus.2020.03.030.
  • Petra, M.; Marija, S.; Jakobek, L., et al. Validation of Spectrophotometric Methods for the Determination of Total Polyphenol and Total Flavonoid Content. J. AOAC Int. 2017, 100(6), 1795–1803. 10.5740/jaoacint.17–0066 .
  • Scopus Preview Wabaidur, S. M.; Ali Khan, M.; Siddiqui, M. R.; Otero, M.; Jeon, B.-H.; Alothman, Z. A.; Hakami, A. A. H., et al. Oxygenated Functionalities Enriched MWCNTs Decorated with Silica Coated Spinel ferrite-A Nanocomposite for Potentially Rapid and Efficient de-colorization of Aquatic Environment. J. Mol. Liq. 2020, 317, 113916. DOI: 10.1016/j.molliq.2020.113916.
  • Mittal, A.; Naushad, M.; Sharma, G.; ALothman, Z. A.; Wabaidur, S. M.; Alam, M., et al. Fabrication of MWCNTs/ThO 2 Nanocomposite and Its Adsorption Behavior for the Removal of Pb(II) Metal from Aqueous Medium. Desalin. Water Treat. 2016, 57(46), 21863–21869. DOI: 10.1080/19443994.2015.1125805.
  • Alothman, Z. A.; Bahkali, A. H.; Khiyami, M. A.; Alfadul, S. M.; Wabaidur, S. M.; Alam, M.; Alfarhan, B. Z., et al. Low Cost Biosorbents from Fungi for Heavy Metals Removal from Wastewater. Sep. Sci. Technol. (Philadelphia).2019, 55(10), 1766–1775. DOI: 10.1080/01496395.2019.1608242.
  • Naushad, M. A. M. K.; Sharma, G. A.; Alothman, Z. A., et al. Photodegradation of Toxic Dye Using Gum Arabic-crosslinked-poly(acrylamide)/Ni(OH)2/FeOOH Nanocomposites Hydrogel. J. Cleaner Prod. 2019, 241, 118263. DOI: 10.1016/j.jclepro.2019.118263.
  • Li, W.; Tang, X., et al. Adsorption Kinetics of Dioscorea Zingiberensis Yellow Pigment on the Macroporous Resins. Ion Exch. Adsorption. 2008, 24(6), 526–534.
  • Wabaidur, A. S. M.; AlAmmari, A.; Aqel, A.; AL-Tamrah, S. A.; Alothman, Z. A.; Ahmed, A. Y. B. H., et al. Determination of Free Fatty Acids in Olive Oils by UPHLC-MS. J. Chromatogr. B 2016, 1031, 109–115. DOI: 10.1016/j.jchromb.2016.07.040.
  • Liu, Y.; Liu, J.; Chen, X.; Liu, Y.; Di, D., et al. Preparative Separation and Purification of Lycopene from Tomato Skins Extracts by Macroporous Adsorption Resins. Food Chem. 2010, 123(4), 1027–1034. DOI: 10.1016/j.foodchem.2010.05.055.
  • Liu, C.; Jiao, R.; Yao, L.; Zhang, Y.; Lu, Y.; Tan, R., et al. Adsorption Characteristics and Preparative Separation of Chaetominine from Aspergillus Fumigatus Mycelia by Macroporous Resin. J. Chromatogr. B 2016, 1015-1016, 135–141. DOI: 10.1016/j.jchromb.2016.02.027.
  • Lin, L.; Zhao, H.; Dong, Y.; Yang, B.; Zhao, M., et al. Macroporous Resin Purification Behavior of Phenolics and Rosmarinic Acid from Rabdosia Serra (MAXIM.) HARA Leaf. Food Chem. 2011, 130(2), 417–424. DOI: 10.1016/j.foodchem.2011.07.069.
  • Jia, G.; Lu, X. Enrichment and Purification of Madecassoside and Asiaticoside from Centella Asiatica Extracts with Macroporous Resins. J. Chromatogr. A. 2008, 1193(1), 136–141. DOI: 10.1016/j.chroma.2008.04.024.
  • Yu, Y.; Zhuang, Y.; Wang, Z.-H., et al. Adsorption of Water-Soluble Dye onto Functionalized Resin. J. Colloid Interface Sci. 2001, 242(2), 288–293. DOI: 10.1006/jcis.2001.7780.
  • Liu, Y.; Shan, L.; Wang, X., et al. Purification of Soybean Phosphatidylcholine Using D113-III Ion Exchange Macroporous Resin Packed Column Chromatography. J. Am. Oil Chem. Soc. 2009, 86(2), 183–188. DOI: 10.1007/s11746-008-1324-9.
  • Wang, C.; Shi, L.; Fan, L.; Ding, Y.; Zhao, S.; Liu, Y.; Ma, C., et al. Optimization of Extraction and Enrichment of Phenolics from Pomegranate (Punica Granatum L.) Leaves. Ind. Crops Prod. 2013, 42, 587–592. DOI: 10.1016/j.indcrop.2012.06.031.
  • Kenawy, E.; Ghfar, A. A.; Wabaidur, S. M.; Khan, M. A.; Siddiqui, M. R.; Alothman, Z. A.; Alqadami, A. A.; Hamid, M., et al. Cetyltrimethylammonium Bromide Intercalated and Branched Polyhydroxystyrene Functionalized Montmorillonite Clay to Sequester Cationic Dyes. J. Environ. Manage. 2018, 219, 285–293. DOI: 10.1016/j.jenvman.2018.04.121.
  • Sun, L.; Guo, Y.; Fu, C.; Li, J.; Li, Z., et al. Simultaneous Separation and Purification of Total Polyphenols, Chlorogenic Acid and Phlorizin from Thinned Young Apples. Food Chem. 2013, 136(2), 1022–1029. DOI: 10.1016/j.foodchem.2012.09.036.
  • Díaz-García, M. C.; Obón, J. M.; Castellar, M. R.; Collado, J.; Alacid, M., et al. Quantification by UHPLC of Total Individual Polyphenols in Fruit Juices. Food Chem. 2013, 138(2–3), 938–949. DOI: 10.1016/j.foodchem.2012.11.061.
  • Hong, C.; Chang, C.; Zhang, H.; Jin, Q.; Wu, G.; Wang, X., et al. Identification and Characterization of Polyphenols in Different Varieties of Camellia Oleifera Seed Cakes by UPLC-QTOF-MS. Food Res. Int. 2019, 126, 108614. DOI: 10.1016/j.foodres.2019.108614.
  • Weisz, G. M.; Kammerer, D. R.; Carle, R., et al. Identification and Quantification of Phenolic Compounds from Sunflower (Helianthus Annuus L.) Kernels and Shells by HPLC-DAD/ESI-MS N. Food Chem. 2008, 115(2), 758–764. DOI: 10.1016/j.foodchem.2008.12.074.
  • Carazzone, C.; Mascherpa, D.; Gazzani, G.; Papetti, A., et al. Identification of Phenolic Constituents in Red Chicory Salads (Cichorium Intybus) by high-performance Liquid Chromatography with Diode Array Detection and Electrospray Ionisation Tandem Mass Spectrometry. Food Chem. 2013, 138(2–3), 1062–1071. DOI: 10.1016/j.foodchem.2012.11.060.
  • Faqueti, L. G.; Sandjo, L. P.; Biavatti, M. W., et al. Simultaneous Identification and Quantification of Polymethoxyflavones, Coumarin and Phenolic Acids in Ageratum Conyzoides by UPLC-ESI-QToF-MS and UPLC-PDA. J. Pharm. Biomed. Anal. 2017, 145, 621–628. DOI: 10.1016/j.jpba.2017.07.034.
  • Cai, Y.; Wu, L.; Lin, X.; Hu, X.; Wang, L., et al. Phenolic Profiles and Screening of Potential α-glucosidase Inhibitors from Polygonum Aviculare L. Leaves Using ultra-filtration Combined with HPLC-ESI-qTOF-MS/MS and Molecular Docking Analysis. Ind. Crops Prod. 2020, 154, 112673. DOI: 10.1016/j.indcrop.2020.112673.
  • Fracassetti, D.; Gabrielli, M.; Costa, C.; Tomás-Barberán, F. A.; Tirelli, A., et al. Characterization and Suitability of polyphenols-based Formulas to Replace Sulfur Dioxide for Storage of Sparkling White Wine. Food Control 2016, 60, 606–614. DOI: 10.1016/j.foodcont.2015.09.005.
  • Pavlović, A. V.; Papetti, A.; Zagorac, D. Č. D.; Gašić, U. M.; Mišić, D. M.; Tešić, Ž. L.; Natić, M. M., et al. Phenolics Composition of Leaf Extracts of Raspberry and Blackberry Cultivars Grown in Serbia. Ind. Crops Prod. 2016, 87, 304–314. DOI: 10.1016/j.indcrop.2016.04.052.
  • Min, Z.; Jun, X.; Qian, D.; Guo, J.; Jiang, S.; Shang, E.-X.; Duan, J.-A., et al. Identification of Astilbin Metabolites Produced by Human Intestinal Bacteria Using UPLC-Q-TOF/MS. Biomed. Chromatogr.: BMC.2014, 28(7), 1024–1029. DOI: 10.1002/bmc.3111.
  • Xia, J. X.; Zhao, B. B.; Zan, J.-F.; Wang, P.; Chen, -L.-L., et al. Simultaneous Determination of Phenolic Acids and Flavonoids in Artemisiae Argyi Folium by HPLC-MS/MS and Discovery of Antioxidant Ingredients Based on Relevance Analysis. J. Pharm. Biomed. Anal. 2019, 175, 112734. DOI: 10.1016/j.jpba.2019.06.031.
  • Neugart, S.; Rohn, S.; Schreiner, M., et al. Identification of Complex, Naturally Occurring Flavonoid Glycosides in Vicia Faba and Pisum Sativum Leaves by HPLC-DAD-ESI-MS N and the Genotypic Effect on Their Flavonoid Profile. Food Res. Int. 2015, 76(1), 114–121. DOI: 10.1016/j.foodres.2015.02.021.
  • Antonia, M.; Hornedo-Ortega, R.; Cerezo, A. B.; Troncoso, A. M.; García-Parrilla, M. C., et al. Determination of Nonanthocyanin Phenolic Compounds Using High-Resolution Mass Spectrometry (UHPLC-Orbitrap-MS/MS) and Impact of Storage Conditions in a Beverage Made from Strawberry by Fermentation. J. Agric. Food Chem. 2016, 64(6), 1367–1376. DOI: 10.1021/acs.jafc.5b05617.
  • Clifford, M. N.; Johnston, K. L.; Knight, S.; Kuhnert, N., et al. Hierarchical Scheme for LC-MS N Identification of Chlorogenic Acids. J. Agric. Food Chem. 2003, 51(10), 2900–2911. DOI: 10.1021/jf026187q.
  • Sunil Kumar, P. C. V. B.; Kumar, B.; Bajpai, V.; Singh, A.; Srivastava, M.; Mishra, D. K.; Kumar, B. Rapid Qualitative and Quantitative Analysis of Bioactive Compounds from Phyllanthus Amarus Using LC/MS/MS Techniques. Ind. Crops Prod. 2015, 69, 143–152. DOI: 10.1016/j.indcrop.2015.02.012.
  • Abu-Reidah, I. M.; Ali-Shtayeh, M. S.; Jamous, R. M.; Arráez-Román, D.; Segura-Carretero, A., et al. HPLC-DAD-ESI-MS/MS Screening of Bioactive Components from Rhus Coriaria L. (Sumac) Fruits. Food Chem. 2015, 166, 179–191. DOI: 10.1016/j.foodchem.2014.06.011.