761
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Anti-HMG-CoA reductase, antioxidant, anti-urease potentials, and anti-leukemia properties of 4-Butylresorcinol as a potential treatment for hypercholesterolemia

&
Pages 1974-1986 | Received 20 Mar 2022, Accepted 16 Aug 2022, Published online: 02 Sep 2022

References

  • Fuchs, D.; Daniel, V.; Sadeghi, M.; Opelz, G., and Naujokat, C.; ; , et al. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells. Biochem. Biophys. Res. Commun 2010, 394, 1098–1104. DOI: 10.1016/j.bbrc.2010.03.138.
  • M. She, X. Niu, X. Chen, J. Li, M. Zhou, Y. He,Y. Le, K. Guo Resistance of leukemic stem-like cells in AML cell line KG1a to natural killer cell-mediated cytotoxicity Cancer Lett., 318 (2012), pp. 173–179.
  • S. Neelakantan, S. Nasim, M.L. Guzman, C.T. JordanP.A., Crooks Aminoparthenolides as novel anti-leukemic agents: Discovery of the NF-kappaB inhibitor, DMAPT (LC-1) Bioorg. Med. Chem. Lett., 19 (2009), pp. 4346–4349.
  • Katagiri T, Okubo T, Oyobikawa M et al. Inhibitory action of 4-n-butylresorcinol on Melanogenesis and its skin whitening effect. J Soc Cosmet Chem Jpn 2001; 35: 42– 49.
  • Reiss, A. B.; Wirkowski, E. Role of HMG-CoA Reductase Inhibitors in Neurological Disorders. Drugs. 2007, 67, 2111–2120. DOI: 10.2165/00003495-200767150-00001.
  • Farmer, J. A.; Torre-Amione, G. Comparative Tolerability of the HMG-CoA Reductase Inhibitors. Drug Saf. 2000 Sep, 23(3), 197–213. doi:10.2165/00002018-200023030-00003.
  • Ucar, M.; Mjorndal, T.; Dahlqvist, R. HMG-CoA Reductase Inhibitors and Myotoxicity. Drug Saf. 2000 Jun, 22(6), 441–457. doi:10.2165/00002018-200022060-00003.
  • Youssef, S.; Stuve, O.; Patarroyo, J. C.; Ruiz, P. J.; Radosevich, J. L.; Hur, E. M.; Bravo, M.; Mitchell, D. J.; Sobel, R. A.; Steinman, L., et al. The HMG-CoA Reductase Inhibitor, Atorvastatin, Promotes a TH2 Bias and Reverses Paralysis in Central Nervous System Autoimmune Disease. Nature. 2002Nov7, 420(6911), 78–84. DOI: 10.1038/nature01158.
  • Abid, O.-U.-R.; Babar, T. M.; Ali, F. I.; Ahmed, S.; Wadood, A.; Rama, N. H.; Uddin, R.; Zaheer-ul-Haq; Khan, A.; Choudhary, M. I., et al. Identification of Novel Urease Inhibitors by high-throughput Virtual and in Vitro Screening. ACS Med. Chem. Lett. 2010, 1(4), 145–149.
  • Aslam, M. A.; Mahmood, S. U.; Shahid, M.; Saeed, A.; Iqbal, J., et al. Synthesis, Biological Assay in Vitro and Molecular Docking Studies of New Schi Ff Base Derivatives as Potential Urease Inhibitors. Eur. J. Med. Chem. 2011, 46(11), 5473–5479.
  • Abbas, A.; Ali, B.; Khan, K. M.; Ur Rahman, S.; Ur Rahman, S.; Perveen, S.; Perveen, S.; Perveen, S. Synthesis and in Vitro Urease Inhibitory Activity of Benzohydrazide Derivatives, in Silico and Kinetic Studies. Bioorg. Chem. 2019, 82, 163–177. DOI: 10.1016/j.bioorg.2018.09.036.
  • Asadi, L.; Gholivand, K.; Zare, K. Phosphorhydrazides as Urease and Acetylcholinesterase Inhibitors: Biological Evaluation and QSAR Study. J. Iran. Chem. Soc. 2016, 13(7), 1213–1223. DOI: 10.1007/s13738-016-0836-8.
  • Pyne, S.; Gayathri, P. Geometric Methods in Molecular Docking. Bioinform India J. 2005, III, 11–12.
  • Girija, C. R.; Karunakar, P.; Poojari, C. S.; Begum, N. S.; Syed, A. A. Molecular Docking Studies of Curcumin Derivatives with Multiple Protein Targets for Procarcinogen Activating Enzyme Inhibition. J. Proteomics Bioinform. 2010, 3, 200–203. DOI: 10.4172/jpb.1000140.
  • Steussy, C. N.; Critchelow, C. J.; Schmidt, T.; Min, J. K.; Wrensford, L. V.; Burgner, J. W.; Stauffacher, C. V.; Stauffacher, C. V. A Novel Role for Coenzyme A during Hydride Transfer in 3-hydroxy-3-methylglutaryl-coenzyme A Reductase. Biochemistry. 2013, 52(31), 5195–5205. DOI: 10.1021/bi400335g.
  • Begum, A.; Choudhary, M. I.; Betzel, C. (2012). The First Jack Bean Urease (Canavalia Ensiformis) Complex Obtained at 1.52 Resolution.
  • Takahashi, M.; Kusumi, K.; Shumiya, S.; Nagase, S. Plasma Lipid Concentrations and Enzyme Activities in Nagase Analbuminemia Rat (NAR. Exp Anim (Tokyo) 1983, 32, 39–46. DOI: 10.1538/expanim1978.32.1_39.
  • Rosenson, R. S.;. Pluripotential Mechanisms of Cardioprotection with HMG-CoA Reductase Inhibitor Therapy. Am J Cardiovasc Drugs. 2001, 1(6), 411–420. DOI: 10.2165/00129784-200101060-00001.
  • Mobley, H. L.; Hausinger, R. P. Microbial Ureases: Significance, Regulation, and Molecular Characterization. Microbiol Rev 1989, 53, 85–108. DOI: 10.1128/mr.53.1.85-108.1989.
  • Arshad, M.; Jadoon, M.; Iqbal, Z.; Fatima, M.; Ali, M.; Ayub, K.; Qureshi, A. M.; Ashraf, M.; Arshad, M. N.; Asiri, A. M. Synthesis, Molecular Structure, Quantum Mechanical Studies and Urease Inhibition Assay of Two New Isatin Derived Sulfonylhydrazides. J. Mol. Struct. 2017, 1133, 80–89.
  • Ahmed, M.; Qadir, M. A.; Hameed, A.; Arshad, M. N.; Asiri, A. M.; Muddassar, M. Azomethines, Isoxazole, N-substituted Pyrazoles and Pyrimidine Containing Curcumin Derivatives: Urease Inhibition and Molecular Modeling Studies. Biochem. Biophys. Res. Commun. 2017, 490(2), 434–440. DOI: 10.1016/j.bbrc.2017.06.059.
  • Taha, M.; Shah, S. A. A.; Khan, A.; Arshad, F.; Ismail, N. H.; Afifi, M.; Imran, S.; Choudhary, M. I. Synthesis of 3, 4, 5-trihydroxybenzohydrazone and Evaluation of Their Urease Inhibition Potential. Arab. J. Chem. 2019, 12(8), 2973–2982. DOI: 10.1016/j.arabjc.2015.06.036.
  • Rauf, A.; Shahzad, S.; Bajda, M.; Yar, M.; Ahmed, F.; Hussain, N.; Akhtar, M. N.; Khan, A.; Jończyk, J. Design and Synthesis of New barbituric-and Thiobarbituric Acid Derivatives as Potent Urease Inhibitors: Structure Activity Relationship and Molecular Modeling Studies. Bioorg. Med. Chem. 2015, 23(17), 6049–6058. DOI: 10.1016/j.bmc.2015.05.038.
  • Schrödinger Release 2021-3: Maestro; Schrödinger, LLC: New York, NY, 2021.
  • Schrödinger Release 2021-3: LigPrep; Schrödinger, LLC: New York, NY, 2021.
  • Schrödinger Release 2021-3: QikProp; Schrödinger, LLC: New York, NY, 2021.
  • Wang, W.; Elizabeth, R.; Rayburn, J. H.; Zhao, Y.; Wang, H.; Zhang, R. Anti-lung Cancer Effects of Novel Ginsenoside 25-OCH3-PPD. Lung Cancer. 2009, 65(3), 306–311. DOI: 10.1016/j.lungcan.2008.11.016.
  • Schonbeck, U.; Libby, P. Inflammation, Immunity, and HMG-CoA Reductase Inhibitors: Statins as Antiinflammatory Agents? Circulation. 2004, 109(suppl 1), II18–II26. DOI: 10.1161/01.CIR.0000129505.34151.23.
  • Waldman, A.; Kritharides, L. The Pleiotropic Effects of HMG-CoA Reductase Inhibitors. Drugs. 2003, 63, 139–152. DOI: 10.2165/00003495-200363020-00002.
  • Chung, Y. S.; Lee, M. D.; Lee, S. K., et al. HMG-CoA Reductase Inhibitors Increase BMD in Type 2 Diabetes Mellitus Patients. J. Clin. Endocrinol. Metab. 2000, 85(3), 1137–1142.
  • Mobley, H. L.; Island, M. D.; Hausinger, R. P. Microbiol. Rev. 1995, 59, 451–480.
  • Khan, K. M.; Iqbal, S.; Lodhi, M. A.; Maharvi, G. M.; Zia- Ullah; Choudhary, M. I.; Atta-ur- Rahman; Perveen, M. I.; Ullah, Z.; Rahman, A.-U. Biscoumarin: New Class of Urease Inhibitors; Economical Synthesis and Activity. Bioorg. Med. Chem. 2004, 12(8), 1963–1968. DOI: 10.1016/j.bmc.2004.01.010.
  • Menteşe, E.; Bektaş, H.; Sokmen, B. B.; Emirik, M.; Çakır, D.; Kahveci, B. Synthesis and Molecular Docking Study of Some 5, 6-dichloro-2-cyclopropyl-1H-benzimidazole Derivatives Bearing Triazole, Oxadiazole, and Imine Functionalities as Potent Inhibitors of Urease. Bioorg. Med. Chem. Lett. 2017, 27, 3014–3018. DOI: 10.1016/j.bmcl.2017.05.019.
  • Isaac, I. O.; Al-Rashida, M.; Rahman, S. U.; Alharthy, R. D.; Asari, A.; Hameed, A.; Khan, K. M.; Iqbal, J. Acridine-based (Thio) Semicarbazones and Hydrazones: Synthesis, in Vitro Urease Inhibition, Molecular Docking and in-silico ADME Evaluation. Bioorg. Chem. 2019, 82, 6–16. DOI: 10.1016/j.bioorg.2018.09.032.
  • Nabati F, Mojab F, Habibi-Rezaei M, Bagherzadeh K, Amanlou M, Yousefi B. Large scale screening of commonly used Iranian traditional medicinal plants against urease activity. Daru. 2012 Oct 31;20(1):72. DOI: 10.1186/2008-2231-20-72.
  • Shabana, S.; Kawaı, A.; Kaı, K.; Akıyama, K.; Hayashı, H. Inhibitory Activity against Urease of Quercetin Glycosides Isolated from Allium Cepa and Psidium Guajava. Biosci., Biotechnol., Biochem. 2010, 74(4), 878–880. DOI: 10.1271/bbb.90895.
  • Alyar, S.; Şen, T.; Özmen, Ü. Ö.; Alyar, H.; Adem, Ş.; Şen, C. Synthesis, Spectroscopic Characterizations, Enzyme Inhibition, Molecular Docking Study and DFT Calculations of New Schiff Bases of Sulfa Drugs. J. Mol. Struct. 2019, 1185, 416–424. DOI: 10.1016/j.molstruc.2019.03.002.
  • Banuppriya, G.; Sribalan, R.; Padmini, V. Synthesis and Characterization of curcumin-sulfonamide Hybrids: Biological Evaluation and Molecular Docking Studies. J. Mol. Struct. March 5, 2018, 1155, 90e100. DOI: 10.1016/j.molstruc.2017.10.097.
  • Lipinski, C. A.;. Lead-and drug-like Compounds: The rule-of-five Revolution. Drug Discov Today Technol. 2004, 1(4), 337–341. DOI: 10.1016/j.ddtec.2004.11.007.
  • Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Delivery Rev. 1997, 23, 3–25. DOI: 10.1016/S0169-409X(96)00423-1.
  • Zochbauer-Muller, S.; Fong, K. M.; Virmani, A. K.; Geradts, J.; Gazdar, A. F.; Minna, J. D. Aberrant Promoter Methylation of Multiple Genes in non-small Cell Lung Cancers. Cancer Res. 2001, 61, 249–255.