8,726
Views
8
CrossRef citations to date
0
Altmetric
Review

A review on health benefits, antimicrobial and antioxidant properties of Bambara groundnut (Vigna subterranean)

, ORCID Icon & ORCID Icon
Pages 91-107 | Received 05 Sep 2022, Accepted 25 Nov 2022, Published online: 16 Dec 2022

References

  • Ibny, F. Y. I.; Jaiswal, S. K.; Mohammed, M.; Dakora, F. D. Symbiotic Effectiveness and Ecologically Adaptive Traits of Native Rhizobial Symbionts of Bambara Groundnut (Vigna subterranea L. Verdc.) in Africa and Their Relationship with Phylogeny. Scientific Reports. 2019, 9(1), 1–17. DOI: 10.1038/s41598-019-48944-1.
  • Temegne, N.; Gouertoumbo, W. F.; Wakem, G. A.; Nkou, F. T. D.; Youmbi, E.; Ntsomboh-Ntsefong, G. Origin and Ecology of Bambara Groundnut (Vigna subterranea (L.) Verdc): A Review. J Ecol Nat Resour. 2018, 2, 1–10. DOI: 10.23880/JENR-16000140.
  • Adeleke, O. R.; Adiamo, O. Q.; Fawale, O. S. Nutritional, Physicochemical, and Functional Properties of Protein Concentrate and Isolate of newly-developed Bambara Groundnut (Vigna subterrenea L.) Cultivars. Food Sci. Nutr. 2018, 6, 229–242. DOI: 10.1002/fsn3.552.
  • Arise, A. K.; Amonsou, E. O.; Ijabadeniyi, O. A. Influence of Extraction Methods on Functional Properties of Protein Concentrates Prepared from South African Bambara Groundnut Landraces. Int. J. Food Sci. Technol. 2015, 50, 1095–1101. DOI: 10.1111/ijfs.12746.
  • Oyeyinka, S. A.; Oyeyinka, A. T. A Review on Isolation, Composition, Physicochemical Properties and Modification of Bambara Groundnut Starch. Food Hydrocoll. 2018, 75, 62–71. DOI: 10.1016/j.foodhyd.2017.09.012.
  • Massawe, F. J.; Mwale, S. S.; Azam-Ali, S. N.; Roberts, J. A. Breeding in Bambara Groundnut (Vigna subterranea (L.) Verdc.): Strategic Considerations. Afr. J. Biotechnol. 2005, 4, 463–471.
  • Mbosso, C.; Boulay, B.; Padulosi, S.; Meldrum, G.; Mohamadou, Y.; Niang, A. B.; Coulibaly, H.; Koreissi, Y. Sidibe. Fonio and Bambara Groundnut Value Chains in Mali: Issues, Needs, and Opportunities for Their Sustainable Promotion. Sustainability. 2020, 12, 4766. DOI: 10.3390/su12114766.
  • Tan, X. L.; Azam-Ali, S.; Goh, E. V.; Mustafa, M.; Chai, H. H.; Ho, W. K.; Mayes, S.; Mabhaudhi, T.; Azam-Ali, S.; Massawe, F. Bambara Groundnut: An Underutilized Leguminous Crop for Global Food Security and Nutrition. Front Nutr. 2020, 7, 601496. DOI: 10.3389/fnut.2020.60149.
  • Jideani, V. A.; Diedericks, C. F. Nutritional, Therapeutic, and Prophylactic Properties of Vigna subterranea and Moringa Oleifera. In Antioxidant-Antidiabetic Agents and Human Health; Oguntibe, O., Ed.; Janeza Trdine: Rijeka, Croatia, 2014; Vol. 9. 187–201. DOI:10.5772/57169.
  • Onyilagha, J. C.; Islam, S.; Ntamatungiro, S. Comparative Phytochemistry of Eleven Species of Vigna (Fabaceae). Biochem. Syst. Ecol. 2009, 37, 16–19. DOI: 10.1016/j.bse.2008.11.013.
  • Nyau, V.; Prakash, S.; Rodrigues, J.; Farrant, J. Antioxidant Activities of Bambara Groundnuts as Assessed by FRAP and DPPH Assays. J. Food Nutr. Res. 2015, 3, 7–11. DOI: 10.12691/ajfn-3-1-2.
  • Harris, T.; Jideani, V.; Le Roes-Hill, M. Flavonoids and Tannin Composition of Bambara Groundnut (Vigna subterranea) of Mpumalanga, South Africa. Heliyon. 2018, 4, e00833. DOI: 10.1016/j.heliyon.2018.e00833.
  • Okafor, J. N.; Rautenbauch, F.; Meyer, M.; Le Roes-Hill, M.; Harris, T.; Jideani, V. A. Phenolic Content, Antioxidant, Cytotoxic and anti-proliferative Effects of Fractions of Vigna subterraenea (L.) Verdc from Mpumalanga, South Africa. Heliyon. 2021, 7, e08397. DOI: 10.1016/j.heliyon.2022.e09024.
  • Oyeyinka, A. T.; Pillay, K.; Tesfay, S.; Siweal, M. Physical, Nutritional and Antioxidant Properties of Zimbabwean Bambara Groundnut and Effects of Processing Methods on Their Chemical Properties. Int. J. Food Sci. Technol. 2017, 52, 2238–2247.
  • Manessis, G.; Kalogianni, A. I.; Lazou, T.; Moschovas, M.; Bossis, I.; Gelasakis, A. I. Plant-Derived Natural Antioxidants in Meat and Meat Products. Antioxidants. 2020, 9, 1215. DOI: 10.3390/antiox9121215.
  • Oyeyinka, S. A.; Abdulsalm, A. O.; El-Imam AM, A.; Oyeyinka, A. T.; Olagunju, O. F.; Arise, A. K.; Kolawole, F. L.; Adedeji, E. O.; Njobeh, P. B. Total Phenolic Content, Antioxidant, anti-inflammatory and anti-microbial Potentials of Bambara Groundnut (Vigna subterranean L.) Seed Extract. Br. Food J. 2021, 0637. DOI: 10.1108/BFJ-07-2020-0637.
  • Hillocks, R.; Bennett, C.; Mponda, O. Bambara Nut: A Review of Utilisation, Market Potential and Crop Improvement. Afr CropSsci J. 2012, 20, 1–16.
  • Bamshaiye, O. M.; Adegbola, J. A.; Bamshaiye, E. I. Bambara Groundnut: An Underutilized Nut in Africa. Adv Agric Biotechnol. 2011, 1, 60–72.
  • Chai, H. H.; Massawe, F.; Mayes, S. Effects of Mild Drought Stress on the morpho-physiological Characteristics of a Bambara Groundnut Segregating Population. Euphytica. 2016, 208, 225–236. DOI: 10.1007/s10681-015-1581-2.
  • Kone, M.; Patat-Ochatt, E. M.; Conreux, C.; Samgwan, R. S.; Ochatt, S. J. In Vitro Morphogenesis from Cotyledon and Epicotyl Explants and Flow Cytometry Distinctions between Landraces of Bambara Groundnut (Vigna subterranea (L) Verdc] an under-utilized Grain Legume. Plant Cell, Tissue Organ Cult. 2007, 88, 61–75. DOI: 10.1007/s11240-006-9179-y.
  • Department of Agriculture, Forestry & Fisheries. Production Guideline for Bambara Groundnuts: Pretoria, South Africa. Pp. 1–10. Published by Directorate Agricultural Information Services & Department of Agriculture, Forestry & Fisheries. (2011) URL www.nda.agri.za/docs/Brochures/ProguideBambara.pdf. (Accessed July 02, 2022).
  • Maphosa, Y.; Jideani, V. A. The Role of Legumes in Human Nutrition. Func. food-improve Health Adequate Food. 2017, 1, 13. DOI: 10.5772/intechopen.69127.
  • Temba, M. C.; Njobeh, P. B.; Adebo, O. A.; Olugbile, A. O.; Kayitesi, E. The Role of Compositing Cereals with Legumes to Alleviate Protein Energy Malnutrition in Africa. Int. J. Food Sci. Technol. 2016, 51, 543–554. DOI: 10.1111/ijfs.13035.
  • Harris, T. Bambara Groundnut (Vigna subterranean) from Mpumalanga Province of South Africa: Phytochemical and Antimicrobial Properties of Seeds and Product Extracts. 2017. Doctoral dissertation, Cape Peninsula University of Technology), Bellville, Cape Town, South Africa.
  • Okwunodulu, I. N.; Peter, G. C.; Okwunodulu, F. U. Proximate Quantification and Sensory Assessment of Moi-Moi Prepared from Bambara Nut and Cowpea Flour Blends. Asian Food Sci. J. 2019, 9, 1–11.
  • Mubaiwa, J.; Fogliano, V.; Chidewe, C.; Bakker, E. J.; Linnemann, A. R. Utilization of Bambara Groundnut (Vigna subterranea (L.) Verdc.) for Sustainable Food and Nutrition Security in semi-arid Regions of Zimbabwe. PLoS One. 2018, 13, e0204817. DOI: 10.1371/journal.pone.0204817.
  • Cook, D. Small Scale Farmer’s Utilization and Perceptions of Bambara Groundnut Production in South Africa: A Case Study in a semi-arid Region of Limpopo. 2017. Master of Philosophy Dissertation, University of Cape Town, Cape Town, South Africa.
  • Nti, C. A. Effects of Bambara Groundnut (Vigna subterranea) Variety and Processing on the Quality and Consumer Appeal for Its Products. Int. J. Food Sci. Technol. 2009, 44, 2234–2242. DOI: 10.1111/j.1365-2621.2009.02064.x.
  • Temegne, N. C.; Improvement in the performances of Voandzou (Vigna subterranea (L.) Verdc.) in response to phosphate deficiency through chemical and biological fertilization. 2018. Ph.D. Thesis, University of Yaounde I, Faculty of Science, Yaounde, Cameroon. Pp. 151.
  • Olatunde, S. J.; Ogundele, O. M.; Oyedokun, J.; Chinma, C. E.; Shittu, T. A.; Onoja, V. Traditional Food Uses of Bambara Groundnut. In Samson .A. Oyeyinka and Beatrice I.O. Omowaye, eds. Food and Potential Industrial Applications of Bambara Groundnut; Springer: Cham, 2021; :153–68. DOI:10.1007/978-3-030-73920-1_9.
  • Azam-Ali, S. N.; Sesay, A.; Karikari, S. K.; Massawe, F. J.; Aguilar-Manjarrez, J.; Bannayan, M.; Hampson, K. J. Assessing the Potential of an Underutilized Crop – A Case Study Using Bambara Groundnut. Exp Agric. 2001, 37, 433–472.
  • Stephens, J. M. Bambara Groundnut-Voandzeia subterranean, (L.) Thouars, University of Florida: Gainesville, 2012. Accessed June 11, 2022. Available online at: http://edis.ifas.ufl.edu/mv014
  • Okafor, J. N. C.; Okafor, G. I.; Leelavathi, K.; Bhagya, S.; Elemo, G. N. Effect of Roasted Bambara Groundnut (Voandzeia subterranea) Fortification on Quality and Acceptability of Biscuits. Pak. J. Nutr. 2015, 14, 653.
  • Murevanhema, Y. Y.; Jideani, V. A. Potential of Bambara Groundnut (Vigna subterranea (L.) Verdc) Milk as a Probiotic beverage-A Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 954–967. DOI: 10.1080/10408398.2011.574803.
  • Adu-Dapaah, H.; Berchie, J. N.; Amoah, S.; Addo, S. K.; Boateng, M. Progress in Bambara Groundnut Research in Ghana: Breeding, Agronomy and Utilization. In: Onus, N., Currie, A. (eds) Acta Horticulture 1127, ISHS 2016, etc. with Acta Hortic. 2016, 1-8. DOI: 10.17660/ActaHortic.2016.1127.1I:
  • De Kock, C. Bambara Groundnut; Speciality Foods of Africa Pvt Ltd: Harare, Zimbabwe, 2013.
  • Esho, E. O.; George, O. O.; Olagoke, O. V. Isolation and Identification of Moulds from “Moi-Moi” a Locally Prepared Porridge from Bambara Groundnut (Vigna subterranea). Microbiol. Res. J. Int. 2018, 24, 1–4. DOI: 10.9734/MRJI/2018/37294.
  • Khan, M. M. H.; Rafii, M. Y.; Ramlee, S. I.; Jusoh, M.; Al-Mamun, M. Bambara Groundnut (Vigna subterranea L. Verdc): A Crop for the New Millennium, Its Genetic Diversity, and Improvements to Mitigate Future Food and Nutritional Challenges. Sustainability. 2021, 13, 5530. DOI: 10.3390/su13105530.
  • Damfami, A.; Namo, O. A. T. Bambara Groundnut (Vigna subterranea (L.) Verd.): A Review of Its Past, Present and Future Role in Human Nutrition. J Agric For Meteorol Res. 2020, 3, 274–281.
  • Brink, M.; Ramolemana, G. M.; Sibuga, K. P. Vigna subterranea. In Plant Resources of Tropical Africa 1. Cereals and Pulses; Verdc, L, Brink, M., Belay, G., Eds.; PROTA Foundation: Wageningen, Netherlands, 2006; pp :213–18.
  • Yao, D. N.; Kouassi, K. N.; Erba, D.; Scazzina, F.; Pellegrini, N. Nutritive Evaluation of the Bambara Groundnut Ci12 Landrace [Vigna subterranea (L.) Verdc. (Fabaceae)] Produced in Côte d’Ivoire. Int. J. Mol. Sci. 2015, 16, 21428–21441. DOI: 10.3390/ijms160921428.
  • Kaptso, K. G.; Njintang, Y. N.; Nguemtchouin, M. M. G.; Scher, J.; Hounhouigan, J.; Mbofung, C. M. Physicochemical and micro-structural Properties of Flours, Starch and Proteins from Two Varieties of Legumes: Bambara Groundnut (Vigna subterranea). J. Food Sci. Technol. 2015, 52, 4915–4924. DOI: 10.1007/s13197-014-1580-7.
  • Hlanga, N. C.; Modi, A. T.; Mathew, I. Evaluating Nutritional Content among Bambara Groundnut Lines. J. Food Compost. Anal. 2021, 102, 104053. DOI: 10.1016/j.jfca.2021.104053.
  • Hardy, Z. Functional and Nutritional Characteristics of Bambara Groundnut Milk Powder as an Ingredient in Yoghurt. (Master’s thesis). Cape Peninsula University of Technology (2016), Bellville, Cape Town. South Africa.
  • Shanono, I. M.; Muhammad, Y. Y. Effect of Cooking on Proximate and anti-nutritional Content of Bambara Groundnut. Adv. J. Food. Sci. Technol. 2015, 2, 176–180.
  • Halimi, A. R.; Mayes, S.; Barkla, B.; King, G. The Potential of the Underutilized Pulse Bambara Groundnut (Vigna subterranea (L.) Verdc.) for Nutritional Food Security. J. Food Compost. Anal. 2019, 77, 47–59. DOI: 10.1016/j.jfca.2018.12.008.
  • Baptista, A.; Pinho, O.; Pinto, E.; Casal, S.; Mota, C.; Ferreira, I. M. P. L. V. O. Characterization of Protein and Fat Composition of Seeds from Common Beans (Phaseolus Vulgaris L.), Cowpea (Vigna Unguiculata L. Walp) and Bambara Groundnuts (Vigna subterranea L. Verdc) from Mozambique. J. Food Meas. Charact. 2016, 11, 442–450. DOI: 10.1007/s11694-016-9412-2.
  • Olaleke, A. M.; Olorunfemi, O.; Emmanuel, A. A Comparative Study on the Chemical and Amino Acid Composition of Some Nigerian under-utilized Legume Flours. Pak. J. Nutr. 2006, 5, 34–38. DOI: 10.3923/pjn.2006.34.38.
  • Adeleke, O. R.; Adiamo, O. Q.; Fawale, O. S.; Olamiti, G. Effect of Processing Methods on Antinutrients and Oligosaccharides Contents and Protein Digestibility of the Flours of Two Newly Developed Bambara Groundnut Cultivars. Int. Food Res. J. 2017, 24, 1948–1955.
  • Oyeleke, G. O.; Afolabi, O.; Isola, A. D. Some Quality and Carbohydrate Fractions of Bambara Groundnut (Vigna subterranea (L).) Seed Flour. IOSR J. Appl. Chem. 2012, 2, 16–19.
  • Okpuzor, J.; Ogbunugafor, H. A.; Okafor, U.; Sofidiya, M. O. Identification of Protein Types in Bambara Nut Seeds: Perspectives for Dietary Protein Supply in Developing Countries. EXCLI J. 2010, 9, 17–28. DOI: 10.17877/DE290R-12748.
  • Tan, W. C.; Tan, C. H.; Nyam, K. L.; Tan, C. P.; Julkifle, A. Nutritive Bambara Groundnut Powdered Drink Mix: Characterization and in-vivo Assessment of the cholesterol-lowering Effect. J. Food Sci. Technol. 2021, 58, 2992–3000. DOI: 10.1007/s13197-020-04802-x.
  • Schuster-Gajzago, I. Nutritional as Pects of Legumes. In Cultivated Plants, Primarily as Food Sources. Encyclopedia of Food and Agricultural Sciences, Engineering and Technology Resources. Encyclopedia of Life Support System (EOLSS). Developed under the Auspices of the UNESEO; Eolss Publishers: Oxford, United Kingdom, 2004; Vol. 1, pp 1–7.
  • Iwe, M. O.; Onyeukwu, U.; Agiriga, A. N. Proximate, Functional & Pasting Properties of FARO 44 Rice, African Yam Bean & Brown Cowpea Seeds Composite Flour. Cogent Food Agric. 2016, 2, 1142409. DOI: 10.1080/23311932.2016.1142409.
  • Atoyebi, J. O.; Osilesi, O.; Adebawo, O.; Abberton, M. T. Evaluation of Nutrient Parameters of Selected African Accessions of Bambara Groundnut (Vigna subterranea (L.) Verdc). Am. J. Food Nutr. 2017, 5, 83–89. DOI: 10.12691/ajfn-5-3-1.
  • Hussin, H.; Gregory, P. J.; Julkifle, A. L.; Sethuraman, G.; Tan, X. L.; Razi, F.; Azam-Ali, S. N. Enhancing the Nutritional Profile of Noodles with Bambara Groundnut (Vigna subterranea) and Moringa (Moringa Oleifera): A Food System Approach. Front. Sustain. Food Syst. 2020, 4, 59. DOI: 10.3389/fsufs.2020.00059.
  • Musah, M.; Azeh, Y.; Mathew, J. T.; Nwakife, C. N.; Mohammed, A. I.; Saidu, F. Nutritional Evaluation of Bambara Groundnut (Vigna subterranea (L.) Verdc) from Lapai, Nigeria. Afr J Agric Food Sci. 2021, 4, 32–39. DOI: 10.52589/AJAFS_SQI5U7CN.
  • Fasoyiro, S.; Widodo, Y.; Kehinde, T. Processing and Utilization of Legumes in the Tropics. In Trends in Vital Food and Control Engineering. InTechOpen (2012); Eissa, A. A. (), Ed.; 2012. Rijeka, Croatia. accessed June 06, 2022. Available online at: http://www.intechopen.com/books/trends-in-vital-food-andcontrolengineering/processing-and-utilization-of-legumes-in-the-tropics
  • Ndamitso, M. M.; Mustapha, S.; Etsuyankpa, M. B.; Ajai, A. I.; Mathew, J. T. Evaluation of Chemical Composition of Acacia Nilotica Seeds. FUW Trends Sci Technol J. 2017, 2, 927–931.
  • Amarteifio, J. O.; Tibe, O.; Njogu, R. M. The Mineral Composition of Bambara Groundnut (Vigna subterranea (L) Verdc) Grown in Southern Africa. Afr. J. Biotechnol. 2006, 5, 23.
  • Alake, C. O.; Alake, O. O. Genetic Diversity for agro-nutritional Traits in African Landraces of Vigna subterranean Germplasm. J Crop Improv. 2016, 30, 378–398. DOI: 10.1080/15427528.2016.1171817.
  • Kamei, Y.; Hatazawa, Y.; Uchitomi, R.; Yoshimura, R.; Miura, S. Regulation of Skeletal Muscle Function by Amino Acids. Nutrients. 2020, 12, 261. DOI: 10.3390/nu12010261.
  • Adebiyi, J. A.; Obadina, O. A.; Adebo, E. Kayitesi Comparison of Nutritional Quality and Sensory Acceptability of Biscuits Obtained from Native, Fermented, and Malted Pearl Millet (Pennisetum Glaucum) Flour. Food Chem. 2017, 232, 210–217. DOI: 10.1016/j.foodchem.2017.04.020.
  • Adebiyi, J. A.; Njobeh, P. B.; Kayitesi, E. Assessment of Nutritional and Phytochemical Quality of Dawadawa (An African Fermented Condiment) Produced from Bambara Groundnut (Vigna subterranea). Microchem. J. 2019, 149, 104034. DOI: 10.1016/j.microc.2019.104034.
  • Adeyeye, E.; Olaleye, A. Amino Acid Composition of Bambara Groundnut (Vigna subterranea) Seeds: Dietary Implication. Int. J. Chem. Sci. 2012, 5, 152–156.
  • Bujang, A.; Taib, N. A. Changes on Amino Acids Content in Soybean, Garbanzo Bean and Groundnut during pre-treatments and Tempe Making. Sains Malays. 2014, 43, 551–557.
  • Arise, A. K.; Alashi, A. M.; Nwachukwu, I. D.; Malomo, S. A.; Aluko, R. E.; Amonsou, E. O. Inhibitory Properties of Bambara Groundnut Protein Hydrolysate and Peptide Fractions against Angiotensin Converting Enzymes, Renin and Free Radicals. J. Sci. Food Agric. 2016, 97, 2834–2841. DOI: 10.1002/jsfa.8112.
  • Arise, A. K.; Dauda, A. O.; Awolola, G. V.; Akinlolu-ojo, T. V. Physicochemical, Functional and Pasting Properties of Composite Flour Made from Wheat, Plantain and Bambara for Biscuit Production. Ann Food Sci Technol. 2017, 18, 616–624.
  • Ninomiya, K. Food Science of Dashi and Umami Taste. Yakugaku Zasshi. 2016, 136, 1327–1334. DOI: 10.1248/yakushi.16-00057-1.
  • Adebiyi, J. A.; Kayitesi, E.; Adebo, O. A. C.; Njobeh, PB, R. Food Fermentation and Mycotoxin Detoxification: An African Perspective. Food Control. 2019, 106, 106731. DOI: 10.1016/j.foodcont.2019.106731.
  • Pina-Pérez, M. C.; Rivas, A.; Martínez, A.; Rodrigo, D. Antimicrobial Potential of Macro and Microalgae against Pathogenic and Spoilage Microorganisms in Food. Food Chem. 2017, 15, 34–44. DOI: 10.1016/j.foodchem.2017.05.033.
  • Klompong, V.; Benjakul, S. Antioxidative and Antimicrobial Activities of the Extracts from the Seed Coat of Bambara Groundnut (Voandzeia subterranea). RSC Adv. 2015, 5, 9973–9985. DOI: 10.1039/C4RA10955D.
  • Adebiyi, J. A.; Kayitesi, E.; Adebo, O. A. C.; Njobeh, PB, R. Food Fermentation and Mycotoxin Detoxification: An African Perspective. Food Control. 2019, 106, 106731. DOI: 10.1016/j.foodcont.2019.106731.
  • Wanyama, A. W.; Orwa, J. A.; Njenga, P. K.; Irungu, B. N. Evaluation of Cytotoxicity, Antimicrobial Activities and Minerals Composition of Vigna subterranea (L.) Verdc. (Bambara Groundnut) Extracts. Afr J Health Sci. 2017, 30, 88–104.
  • Wanyama, A. W.; Evaluation of Phytoconstituents, Antioxidants Potential, Cytotoxic, Antimicrobial Activities and Mineral Composition of Vigna subterranea (L) Verdic. Extracts (Doctoral dissertation, JKUAT–COHES). (2018)
  • Udeh, E. L.; Nyila, M. A.; Kanu, S. A. Nutraceutical and Antimicrobial Potentials of Bambara Groundnut (Vigna subterranean): A Review. Heliyon. 2020, 6, e05205. DOI: 10.1016/j.heliyon.2020.e05205.
  • Tsamo, A. T.; Ndibewu, P. P.; Dakora, F. D. Phytochemical Profile of Seeds from 21 Bambara Groundnut Landraces via UPLC-qTOF-MS. Food Res. Int. 2018, 112, 160–168. DOI: 10.1016/j.foodres.2018.06.028.
  • Alakali, J. S.; Irtwange, S. V.; Mzer, M. T. Quality Evaluation of Beef Patties Formulated with Bambara Groundnut (Vigna subterranean L.) Seed Flour. Meat Sci. 2010, 85, 215–223. DOI: 10.1016/j.meatsci.2009.12.027.
  • Chon, S. U. Total Polyphenols and Bioactivity of Seeds and Sprouts in Several Legumes. Curr. Pharm. Des. 2013, 19, 6112–6124.
  • Heinonen, M. Antioxidant Activity and Antimicrobial Effect of Berry Phenolics — A Finnish Perspective. Mol. Nutr. Food Res. 2007, 51, 684–691. DOI: 10.1002/mnfr.200700006.
  • Daglia, M. Polyphenols as Antimicrobial Agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. DOI: 10.1016/j.copbio.2011.08.007.
  • Ajiboye, A.; Oyejobi, G. In Vitro Antimicrobial Activities of Vigna subterranean. Int J Antimicrob. 2017, 3, 1–4.
  • Arulpandi, I.; Sangeetha, R. Antibacterial Activity of Fistulin: A Protease Inhibitor Purified from the Leaves of Cassia Fistula. Pharmaceutics. 2012, 1–4. DOI: 10.5402/2012/584073.
  • Lopes, N. A.; Brandelli, A. Nanostructures for Delivery of Natural Antimicrobials in Food. Crit. Rev. Food Sci. Nutr. 2018, 10, 11. DOI: 10.1080/10408398.2017.1308915.
  • Sitohy, M.; Mahgoub, S.; Osman, A.; El-Masry, R.; Al-Gaby, A. Extent and Mode of Action of Cationic Legume Proteins against Listeria Monocytogenes and Salmonella Enteritidis. Probiotics Antimicrob. Proteins. 2013, 5, 195–205. DOI: 10.1007/s12602-013-9134-2.
  • Kanatt, S. R.; Arjun, K.; Sharma, A. Antioxidant and Antimicrobial Activity of Legume Hulls. Food Res. Int. 2011, 44, 3182–3187. DOI: 10.1016/j.foodres.2011.08.022.
  • Glodde, F.; Günal, M.; Kinsel, M. E.; Abughazeleh, A. Effects of Natural Antioxidants on the Stability of Omega-3 Fatty Acids in Dog Food. J. Vet. Res. 2018, 62, 103–108. DOI: 10.2478/jvetres-2018-0014.
  • Aminzare, M.; Hashemi, M.; Ansarian, E.; Bimkar, M.; Azar, H. H.; Mehrasbi, M. R.; Daneshamooz, S.; Raeisi, M.; Jannat, B.; Afshari, A. Using Natural Antioxidants in Meat and Meat Products as Preservatives: A Review. Adv Anim Vet Sci. 2019, 7, 417–426. DOI: 10.17582/journal.aavs/2019/7.5.417.426.
  • de Florio Almeida, J.; Dos Reis, A. S.; Heldt, L. F. S.; Pereira, D.; Bianchin, M.; de, M.; Plata-Oviedo, M. V.; Haminiuk, C. W. I.; Ribeiro, I. S.; da Luz, C. F. P. Lyophilized Bee Pollen Extract: A Natural Antioxidant Source to Prevent Lipid Oxidation in Refrigerated Sausages. LWT - Food Sci. Technol. 2017, 76, 299–305. DOI: 10.1016/j.lwt.2016.06.017.
  • Oyeyinka, A. T.; Pillay, K.; Tesfay, S.; Siweal, M. Physical, Nutritional and Antioxidant Properties of Zimbabwean Bambara Groundnut and Effects of Processing Methods on Their Chemical Properties. Int. J. Food Sci. Technol. 2017, 52, 2238–2247.
  • Chen, A. Y.; Chen, Y. C. A Review of the Dietary Flavonoid, Kaempferol on Human Health and Cancer Chemoprevention. Food Chemistry. 2013, 138(4), 2099–2107. DOI: 10.1016/j.foodchem.2012.11.139.
  • Salawu, S. O. Comparative Study of the Antioxidant Activities of Methanolic Extract and Simulated Gastrointestinal Enzyme Digest of Bambara Nut (Vigna subterranean) FUTA. J Res Sci. 2016, 1, 107–120.
  • Alam, W.; Khan, H.; Shah, M. A.; Cauli, O.; Saso, L. Kaempferol as a Dietary anti-inflammatory Agent: Current Therapeutic Standing. Molecules. 2020, 25(18), 4073. DOI: 10.3390/molecules25184073.
  • Silva Dos Santos, J.; Goncalves Cirino, J. P.; de Oliveira Carvalho, P.; Ortega, M. M. The Pharmacological Action of Kaempferol in Central Nervous System Diseases: A Review. Frontiers in Pharmacology. 2021, 11, 565700. DOI: 10.3389/fphar.2020.565700.
  • Gonçalves, A. C.; Nunes, A. R.; Falcão, A.; Alves, G.; Silva, L. R. Dietary Effects of Anthocyanins in Human Health: A Comprehensive Review. Pharmaceuticals. 2021, 14(7), 690. DOI: 10.3390/ph14070690.
  • Adedayo, B. C.; Anyasi, T. A.; Taylor, M. J. C.; Rautenbauch, F.; Le Roes-Hill, M.; Jideani, V. A. Phytochemical Composition and Antioxidant Properties of Methanolic Extracts of Whole and Dehulled Bambara Groundnut (Vigna subterranea) Seeds. Scientific Reports. 2021, 11(1), 14116. DOI: 10.1038/s41598-021-93525-w.
  • Hwang, H.-J.; Yoon, J. A.; Shin, K.-O. Chemical Properties of Lignans, Their Effects on Human Health, and the Enhancement of Milk Function of Lignans. Journal of Milk Science and Biotechnology. 2018, 36(2), 81–94. DOI: 10.22424/jmsb.2018.36.2.81.
  • Semwal, D. K.; Semwal, R. B.; Combrinck, S.; Viljoen, A. Myricetin: A Dietary Molecule with Diverse Biological Activities. Nutrients. 2016, 8, 90. DOI: 10.3390/nu8020090.
  • Imran, M.; Saeed, F.; Hussain, G.; Imran, A.; Mehmood, Z.; Gondal, T. A.; El-Ghorab, A.; Ahmad, I.; Pezzani, R.; Arshad, M. U., et al. Myricetin: A Comprehensive Review on Its Biological Potentials. Food Sci. Nutr. 2021, 9, 5854–5868. DOI: 10.1002/fsn3.2513.
  • Isemura, M. Catechin in Human Health and Disease. Molecules. 2019, 24, 528.
  • Kim, J. M.; Heo, H. J. The Roles of Catechins in Regulation of Systemic Inflammation. Food Sci. Biotechnol. 2022, 31, 957–970. DOI: 10.1007/s10068-022-01069-0.
  • Thomas, A. A.; Feng, B.; Chakrabarti, S. ANRIL: A Regulator of VEGF in Diabetic Retinopathy. Invest. Ophthalmol. Visual Sci. 2017, 58, 470–480. DOI: 10.1167/iovs.16-20569.
  • Borghi, S. M.; Mizokami, S. S.; Pinho-Ribeiro, F. A.; Fattori, V.; Crespigio, J.; Clemente-Napimoga, J. T.; Verri, J. W. A. The Flavonoid Quercetin Inhibits Titanium Dioxide (TiO2)-induced Chronic Arthritis in Mice. J. Nutr. Biochem. 2018, 53, 81–95. DOI: 10.1016/j.jnutbio.2017.10.010.
  • Salehi, B.; Machin, L.; Monzote, L.; Sharifi-Rad, J.; Ezzat, S. M.; Salem, M. A.; Merghany, R. M.; El Mahdy, N. M.; Kılıç, C. S.; Sytar, O., et al. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS Omega. 2020, 5, 11849–11872. DOI: 10.1021/acsomega.0c01818.
  • Aina, T. A.; Joseph, O. A.; Inyang, K. O.; Temitope, O. O. The Importance and Efficacy of Epigallocatechin and Epicatechin. Eur Pharm Rev. 2017, 22, 42–44.
  • Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The Potential Effects of Chlorogenic Acid, the Main Phenolic Components in Coffee, on Health: A Comprehensive Review of the Literature. Eur. J. Nutr. 2017, 56, 2215–2244. DOI: 10.1007/s00394-017-1379-1.
  • Yan, Y.; Zhou, X.; Guo, K.; Zhou, F.; Yang, H. Use of Chlorogenic Acid against Diabetes Mellitus and Its Complications. J Immunol. Res. 2020, 2020. DOI: 10.1155/2020/9680508.
  • Magnani, C.; Isaac, V. L. B.; Correa, M. A.; Salgado, H. R. N. Caffeic Acid: A Review of Its Potential Use in Medications and Cosmetics. Anal. Methods. 2014, 6, 3203–3210. DOI: 10.1039/C3AY41807C.
  • Cizmarova, B.; Hubkova, B.; Bolerazska, B.; Marekova, M.; Birkova, A. Caffeic Acid: A Brief Overview of Its Presence, Metabolism, and Bioactivity. Bioact Compd Health Dis. 2020, 3, 74–81. DOI: 10.31989/bchd.v3i4.692.
  • Samad, N.; Javed, A. Therapeutic Effects of Gallic Acid: Current Scenario. J Phytochem Biochem. 2018, 2, 2.
  • Kahkeshani, N.; Farzaei, F.; Fotouhi, M.; Alavi, S. S.; Bahramsoltani, R.; Naseri, R.; Momtaz, S.; Abbasabadi, Z.; Rahimi, R.; Farzaei, M. H., et al. Pharmacological Effects of Gallic Acid in Health and Diseases: A Mechanistic Review. Iran. J. Basic Med. Sci. 2019, 22, 225–237. DOI: 10.22038/ijbms.2019.32806.7897.
  • Bhatia, A.; Bharti, S. K.; Tripathi, T.; Mishra, A.; Sidhu, O. P.; Roy, R.; Nautiyal, C. S. Metabolic Profiling of Commiphora Wightii (Guggul) Reveals a Potential Source for Pharmaceuticals and Nutraceuticals. Phytochemistry. 2015, 110, 29–36. DOI: 10.1016/j.phytochem.2014.12.016.
  • Zanello, P. R.; Koishi, A. C.; Júnior Cdeo, R.; Olivera, L. A.; Pereira, A. A.; de Almeida, M. V. Quinic Acid Derivatives Inhibit Dengue Virus Replication in Vitro. Virol. J. 2015, 12, 223. DOI: 10.1186/s12985-015-0443-9.
  • Xu, B.; Chang, S. K. Effect of Soaking, Boiling, and Steaming on Total Phenolic Content and Antioxidant Activities of Cool Season Food Legumes. Food Chem. 2008, 110, 1–13. DOI: 10.1016/j.foodchem.2008.01.045.
  • Laura, A.; Moreno-Escamilla, J. O.; Rodrigo-García, J.; Alvarez-Parrilla, E. Phenolic Compounds. In Postharvest Physiology and Biochemistry of Fruits and Vegetables. Woodhead Publishing. 2019, 253–271. DOI: 10.1016/B978-0-12-813278-4.00012-9.
  • Oyedeji, A. B.; Oladunjoye, A. O.; Ijabadeniyi, O. A.; Kayitesi, E. Phytochemicals in Bambara Groundnut. In Samson .A. Oyeyinka and Beatrice I.O. Ade-Omowaye, eds. Food and Potential Industrial Applications of Bambara Groundnut; Springer: Cham, 2021; pp 137–152.
  • Okafor, J. N.; Jideani, V. A.; Meyer, M.; Le Roes-Hill, M. Bioactive Components in Bambara Groundnut (Vigna subterraenea (L.) Verdc) as a Potential Source of Nutraceutical Ingredients. Heliyon. 2022, 2022, e09024. DOI: 10.1016/j.heliyon.2022.e09024.
  • Thakur, A.; Sharma, V.; Thakur, A. An Overview of anti-nutritional Factors in Food. Int. J. Chem. Stud. 2019, 7, 2472–2479.
  • Ahmmed, T.; Rahman, A.; Salma, U.; Akter, Z.; Ansary, M. M. U.; Khalil, M. I.; Bari, L. N. Phytochemicals and Antioxidant Properties of Some Popular Pulse Varieties of Bangladesh. J. Agric. Chem. Environ. 2020, 9, 343–368. DOI: 10.4236/jacen.2020.94025.
  • Moyo, S. M.; Mavumengwana, V.; Kayitesi, E. Effects of Cooking and Drying on Phenolic Compounds and Antioxidant Activity of African Green Leafy Vegetables. Food Rev Intl. 2018, 34, 248–264. DOI: 10.1080/87559129.2017.1289384.
  • Karak, P. Biological Activities of Flavonoids: An Overview. Int. J. Pharm. Sci. Res. 2019, 10, 1567–1574.
  • Khatun, S. Phenolic Compound, Antioxidant Activity and Nutritional Components of Five Legume Seed. American Journal of Biomedical Science & Research. 2021, 12(4), 328–334. DOI: 10.34297/AJBSR.2021.12.001767.
  • Oluwatoyin, A. Physicochemical Characterization, and Antioxidant Properties of the Seeds and Oils of Ginger (Zingiber Officinale) and Garlic (Allium Sativum). Sci J Chem. 2014, 2, 44–50. DOI: 10.11648/j.sjc.20140206.11.
  • Masek, A.; Latos, M.; Piotrowska, M.; Zaborski, M. The Potential of Quercetin as an Effective Natural Antioxidant and Indicator for Packaging Materials. Food Packag. Shelf Life. 2018, 16, 51–58. DOI: 10.1016/j.fpsl.2018.02.001.
  • Vijayaraghavan, K.; Rajkumar, J.; Seyed, M. A. Phytochemical Screening, Free Radical Scavenging and Antimicrobial Potential of Chromolaena Odorata Leaf Extracts against Pathogenic Bacterium in Wound infections–a Multispectrum Perspective. Biocatal Agric. Biotechnol. 2018, 15, 103–112. DOI: 10.1016/j.bcab.2018.05.014.
  • Ahmed, D.; Khan, M.; Saeed, R. Comparative Analysis of Phenolics, Flavonoids, and Antioxidant and Antibacterial Potential of Methanolic, Hexanic and Aqueous Extracts from Adiantum Caudatum Leaves. Antioxidants. 2015, 4, 394–409.
  • Chinnapun, D.; Sakorn, N. Structural Characterization and Antioxidant and anti-inflammatory Activities of New Chemical Constituent from the Seeds of Bambara Groundnut (Vigna subterranea (L.) Verdc.). CyTA J. Food. 2022, 93–101. DOI: 10.1080/19476337.2022.2087741.
  • Yusnawan, E.; Sutrisno, S.; Kristiono, A. Total Phenolic Content and Antioxidant Activity of Mung Bean Seed Cultivars from Optimized Extraction Treatment. Bul Palawija. 2019, 17, 1–9. DOI: 10.21082/BULPA.V17N1.2019.P1-9.
  • Parikh, B.; Patel, V. H. Total Phenolic Content and Total Antioxidant Capacity of Common Indian Pulses and Split Pulses. J. Food Sci. Technol. 2018, 55, 1499–1507. DOI: 10.1007/s13197-018-3066-5.
  • Malik, P.; Kapoor, S. Antioxidant Potential of Diverse Indian Cultivars of Lentils (Lens Culinaris L.). Res Artic Biol Sci. 2015, 5, 123–129.
  • Mubaiwa, J.; Fogliano, V.; Cathrine, C.; Linnemann, A. R. Hard-to-cook Phenomenon in Bambara Groundnut (Vigna subterranea (L.) Verdc.) Processing: Options to Improve Its Role in Providing Food Security. Food Rev. Int. 2017, 33, 167–194. DOI: 10.1080/87559129.2016.1149864.
  • Chigwedere, C. M.; Njoroge, D. M.; Van Loey, A. M.; Hendrickx, M. E. Understanding the Relations among the Storage, Soaking, and Cooking Behaviour of Pulses: A Scientific Basis for Innovations in Sustainable Foods for the Future. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1135–1165. DOI: 10.1111/1541-4337.12461.
  • Aguilera, J. M.; Rivera, R. Hard-to-cook Defect in Black Beans: Hardening Rates, Water Imbibition and Multiple Mechanism Hypothesis. Food Res. Inter. 1992, 101–108. DOI: 10.1016/0963-9969(92)90150-4.
  • Gwala, S.; Wainana, I.; Pallares, A.; Kyomugasho, C.; Hendrickx, M.; Grauwet, T. Texture and Interlinked post-process Microstructures Determine the in Vitro Starch Digestibility of Bambara Groundnuts with Distinct hard-to-cook Levels. Food Res. Int. 2019, 120, 1–11. DOI: 10.1016/j.foodres.2019.02.022.
  • Garcia, E.; Filisetti, T. M.; Udaeta, J. E.; Lajolo, F. M. Hard-to-cook Beans (Phaseolus Vulgaris): Involvement of Phenolic Compounds and Pectates. J Agric. Food Chem. 1998, 46, 2110–2116. DOI: 10.1021/jf970848f.
  • Chazovachii, B. L.; Chitongo, L.; Ndava, J. Reducing Urban Poverty through Fuel Wood Business in Masvingo City, Zimbabwe: A Myth or Reality. Bangladesh E-J Sociol. 2013, 10, 1.
  • Temudo, M. P.; Cabral, A. I.; Talhinhas, P. Urban and Rural Household Energy Consumption and Deforestation Patterns in Zaire Province, Northern Angola: A Landscape Approach. Appl. Geogr. 2020, 119, 102207. DOI: 10.1016/j.apgeog.2020.102207.
  • Muhammad, I.; Rafii, M. Y.; Ramlee, S. I.; Nazli, M. H.; Harun, A. R.; Oladosu, Y.; Musa, I.; Arolu, F.; Chukwu, S. C.; Sani Haliru, B., et al. Exploration of Bambara Groundnut (Vigna subterranea (L.) Verdc.), an Underutilized Crop, to Aid Global Food Security: Varietal Improvement, Genetic Diversity and Processing. Agronomy. 2020, 10, 766. DOI: 10.3390/agronomy10060766.
  • FAOSTAT—Food and Agriculture Organization of the United Nations. Statistical Databases. Int. J. Human. Soc. Sci., 2013, 3, 234-245. FAOSTAT : Rome, Italy, 2020.
  • Khan, F.; Azman, R.; Chai, H. H.; Mayes, S.; Lu, C. Genomic and Transcriptomic Approaches Towards the Genetic Improvement of Underutilised Crops: The Case of Bambara Groundnut. Afr Crop Sci J. 2016, 24, 429–458. DOI: 10.4314/acsj.v24i4.9.
  • Berchie, J. N.; Adu-Dapaah, H. A.; Dankyi, A. A.; Asare, E.; Plahar, W. A.; Nelson-Quartey, F.; Haleegoah, J.; Asafu-Agyei, J. N.; Addo, J. K. Practices and Constraints in Bambara Groundnut Production, Marketing, and Consumption in the Brong Ahafo and the Upper East Regions of Ghana. J Agron. 2010, 9, 111–118.
  • Majola, N. G.; Gerrano, A. S.; Shimelis, H. Bambara Groundnut (Vigna subterranea [L.] Verdc.) Production, Utilization and Genetic Improvement in sub-Saharan Africa. Agronomy. 2021, 11, 1345. DOI: 10.3390/agronomy11071345.
  • Annan, N. T.; Plahar, W. A.; Nti, C. A. (2003). Dissemination of Improved Bambara Groundnut Processing Technologies through a New Coalition Arrangement to Enhance Rural Livelihoods in Northern Ghana, in Training of Trainees workshop: Tamale Ghana.
  • Nah, S. L.; Chau, C. F. Issues and Challenges in Defeating World Hunger. Trends Food Sci. Technol. 2010, 21, 544–557. DOI: 10.1016/j.tifs.2010.07.013.
  • Jideani, V. A.; Jideani, A. I. Current and Future Bambara Groundnut Research Directions. InBambara Groundnut: Utilization and Future Prospects; Springer: Cham, 2021; pp 217–229.
  • Matsa, W.; Mukoni, M. Traditional Science of Seed and Crop Yield Preservation: Exploring the Contributions of Women to Indigenous Knowledge Systems in Zimbabwe, 2013.
  • Gbaguidi, A. A.; Dansi, A.; Dossou‐Aminon, I.; Dsjc, G.; Orobiyi, A.; Sanoussi, F. Y. Agromorphological Diversity of Local Bambara Groundnut (Vigna subterranea (L.) Verdc.) Collected in Benin. Genet. Resour. Crop Evol. 2018, 65, 1159–1171. DOI: 10.1007/s10722-017-0603-4.