3,805
Views
1
CrossRef citations to date
0
Altmetric
Review

Adulteration in roasted coffee: a comprehensive systematic review of analytical detection approaches

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 231-258 | Received 23 Sep 2022, Accepted 10 Dec 2022, Published online: 28 Dec 2022

References

  • ICO. International Coffee Organization. Coffee Production by Exporting Countries (London), 2022.
  • Núñez, N.; Martínez, C.; Saurina, J.; Núñez, O., et al. High-performance Liquid Chromatography with Fluorescence Detection Fingerprints as Chemical Descriptors to Authenticate the Origin, Variety and Roasting Degree of Coffee by Multivariate Chemometric Methods. J. Sci. Food Agric. 2021, 101(1), 65–73.
  • Abrahão, S. A.; Pereira, R. G. F. A.; Duarte, S. M. D. S.; Lima, A. R.; Alvarenga, D. J.; Ferreira, E. B., et al. COMPOSTOS BIOATIVOS E ATIVIDADE ANTIOXIDANTE DO CAFÉ. Ciênc agrotec. 2010, 34(2), 414–420. DOI: 10.1590/S1413-70542010000200020
  • Assad, E. D.; Sano, E. E.; Cunha, S. A. R. D.; Rodrigues, H. R.; Corrêa, T. B S. 2000. Brasília: Embrapa Café, 699–701.
  • Oliveira, G. Efeito de Diferentes Pontos de Torração E Tipos de Granulometria Na Concentração de Ocratoxina “A” Em Grãos de Café. 2012. Minas Gerais: Universidade Federal de Lavras.
  • Miranda, S. F. USO DE IMAGENS NA IDENTIFICAÇÃO DE IMPUREZAS EM PÓ DE CAFÉ. 2014. Brasília: Universidade de Brasília.
  • Pauli, E. D.; Barbieri, F.; Garcia, P. S.; Madeira, T. B.; Acquaro, V. R.; Scarminio, I. S.; da Camara, C. A. P.; Nixdorf, S. L., et al. Detection of Ground Roasted Coffee Adulteration with Roasted Soybean and Wheat. Food Res. Int. 2014, 61, 112–119. DOI: 10.1016/j.foodres.2014.02.032.
  • Reis, N.; Franca, A. S.; Oliveira, L. S. Performance of Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Chemometrics for Detection of Multiple Adulterants in Roasted and Ground Coffee. LWT - Food Sci. Technol. 2013, 53(2), 395–401. DOI: 10.1016/j.lwt.2013.04.008.
  • AOAC. Official Methods Filth in Ground Coffees and Coffee Substitutes Sub Chapter 2. AOAC. Beverages and Beverage Materials, AOAC: Gaithersburg, 1995; pp98.
  • MS. Ministério da Saúde. Agência Nacional de Vigilância Sanitária – ANVISA. Resolução da Diretoria Colegiada – RDC 623, de 16 de março de 2022. 2022.
  • Lopez, F. C. Determinação do sedimento, cascas e paus no café torrado e moído. Revista Instituto Adolfo Lutz. 1974, 34, 29–34.
  • Mendes, L. C.; Santos, J. C. F.; Corrêa, J. A.; Alkimim, J. F. D.; Silva, D. V. R. D.; Jesus, L. N. D.; Dibai, W. L. S. Validação de método para determinação das impurezas cascas e paus em café torrado e moído. Braz. J. Food Technol. 2016, 19.
  • Cheng, F.; Wu, J.; Zhang, J.; Pan, A.; Quan, S.; Zhang, D.; Kim, H.; Li, X.; Zhou, S.; Yang, L., et al. Development and inter-laboratory Transfer of a Decaplex Polymerase Chain Reaction Assay Combined with Capillary Electrophoresis for the Simultaneous Detection of ten Food Allergens. Food Chem. 2016, 199, 799–808. DOI: 10.1016/j.foodchem.2015.12.058.
  • Toci, A. T.; Farah, A.; Pezza, H. R.; Pezza, L., et al. Coffee Adulteration: More than Two Decades of Research. Crit. Rev. Anal. Chem. 2016, 46(2), 83–92.
  • Burns, D. T.; Tweed, L.; Walker, M. J. Ground Roast Coffee: Review of Analytical Strategies to Estimate Geographic Origin, Species Authenticity and Adulteration by Dilution. Food Anal. Methods. 2017, 10(7), 2302–2310. DOI: 10.1007/s12161-016-0756-3.
  • Wang, X.; Lim, L. T.; Fu, Y. Review of Analytical Methods to Detect Adulteration in Coffee. J. AOAC Int. 2020, 103(2), 295–305. DOI: 10.1093/jaocint/qsz019.
  • Núñez, N.; Collado, X.; Martínez, C.; Saurina, J.; Núñez, O., et al. Authentication of the Origin, Variety and Roasting Degree of Coffee Samples by Non-Targeted HPLC-UV Fingerprinting and Chemometrics. Application to the Detection and Quantitation of Adulterated Coffee Samples. Foods 2020, 9(3). doi:10.3390/foods9030378
  • Núñez, N.; Saurina, J.; Núñez, O. Non-targeted HPLC-FLD Fingerprinting for the Detection and Quantitation of Adulterated Coffee Samples by Chemometrics. Food Control. 2021, 124, 107912. DOI: 10.1016/j.foodcont.2021.107912.
  • Núñez, N.; Saurina, J.; Núñez, O. Authenticity Assessment and Fraud Quantitation of Coffee Adulterated with Chicory, Barley, and Flours by Untargeted HPLC-UV-FLD Fingerprinting and Chemometrics. Foods. 2021, 10(4), 840. DOI: 10.3390/foods10040840.
  • Cheah, W. L.; Fang, M. HPLC-Based Chemometric Analysis for Coffee Adulteration. Foods. 2020, 9(7), 880. DOI: 10.3390/foods9070880.
  • Zanin, R. C.; Kitzberger, C. S. G.; Benassi, M. D. T. Characterization of Roasted Coffea Arabica Species by the Relationship between Caffeine and Diterpenes Contents. Braz. Arch. Biol. Technol. 63, 2020, 1–8.
  • Song, H. Y.; Jang, H. W.; Debnath, T.; Lee, K.-G., et al. Analytical Method to Detect Adulteration of Ground Roasted Coffee. Int. J. Food Sci. Technol. 2019, 54(1), 256–262.
  • Cai, T.; Ting, H.; Jin-Lan, Z. Novel Identification Strategy for Ground Coffee Adulteration Based on UPLC-HRMS Oligosaccharide Profiling. Food Chem. 2016, 190, 1046–1049. DOI: 10.1016/j.foodchem.2015.06.084.
  • Tavares, K. M.; Lima, A. R.; Nunes, C. A.; Silva, V. A.; Mendes, E.; Casal, S.; Pereira, R. G. F. A., et al. Free Tocopherols as Chemical Markers for Arabica Coffee Adulteration with Maize and Coffee by-products. Food Control. 2016, 70, 318–324. DOI: 10.1016/j.foodcont.2016.06.011.
  • Domingues, D. S.; Pauli, E. D.; de Abreu, J. E. M.; Massura, F. W.; Cristiano, V.; Santos, M. J.; Nixdorf, S. L., et al. Detection of Roasted and Ground Coffee Adulteration by HPLC and by Amperometric and by post-column Derivatization UV-Vis Detection. Food Chem. 2014, 146, 353–362. DOI: 10.1016/j.foodchem.2013.09.066.
  • Campanha, F. G.; Dias, R. C. E.; Benassi, M. D. T. Discrimination of Coffee Species Using Kahweol and Cafestol: Effescts of Roasting and of Defects. Coffee Sci 2010, 5(1), 87–96.
  • Garcia, L. M. Z.; Pauli, E. D.; Cristiano, V.; da Camara, C. A. P.; Scarminio, I. S.; Nixdorf, S. L., et al. Chemometric Evaluation of Adulteration Profile in Coffee Due to Corn and Husk by Determining Carbohydrates Using HPAEC-PAD. J. Chromatogr. Sci. 2009, 47(9), 825–832.
  • Jham, G. N.; Winkler, J. K.; Berhow, M. A.; Vaughn, S. F., et al. γ-Tocopherol as a Marker of Brazilian Coffee (Coffea Arabica L.) Adulteration by Corn. J Agri Food Chem. 2007, 55(15), 5995–5999. DOI: 10.1021/jf070967n
  • Flores-Valdez, M.; Meza-Márquez, O. G.; Osorio-Revilla, G.; Gallardo-Velázquez, T., et al. Identification and Quantification of Adulterants in Coffee (Coffea Arabica L.) Using FT-MIR Spectroscopy Coupled with Chemometrics. Foods. 2020, 9(7), 851.
  • Reis, N.; Botelho, B. G.; Franca, A. S.; Oliveira, L. S., et al. Simultaneous Detection of Multiple Adulterants in Ground Roasted Coffee by ATR-FTIR Spectroscopy and Data Fusion. Food Anal. Methods. 2017, 10(8), 2700–2709.
  • Reis, N.; Franca, A. S.; Oliveira, L. S. Concomitant Use of Fourier Transform Infrared Attenuated Total Reflectance Spectroscopy and Chemometrics for Quantification of Multiple Adulterants in Roasted and Ground Coffee. J. Spectrosc. 2016, 2016, 1–7. DOI: 10.1155/2016/4974173.
  • Reis, N.; Franca, A. S.; Oliveira, L. S. Quantitative Evaluation of Multiple Adulterants in Roasted Coffee by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and Chemometrics. Talanta. 2013, 115, 563–568. DOI: 10.1016/j.talanta.2013.06.004.
  • Craig, A. P.; Franca, A. S.; Oliveira, L. S. Discrimination between Defective and non-defective Roasted Coffees by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. Lwt. 2012, 47(2), 505–511. DOI: 10.1016/j.lwt.2012.02.016.
  • Wang, J.; Jun, S.; Bittenbender, H. C.; Gautz, L.; Li, Q. X., et al. Fourier Transform Infrared Spectroscopy for Kona Coffee Authentication. J. Food Sci. 2009, 74(5), C385–91.
  • Correia, R. M.; Tosato, F.; Domingos, E.; Rodrigues, R. R. T.; Aquino, L. F. M.; Filgueiras, P. R.; Lacerda, V.; Romão, W., et al. Portable near Infrared Spectroscopy Applied to Quality Control of Brazilian Coffee. Talanta. 2018, 176, 59–68. DOI: 10.1016/j.talanta.2017.08.009.
  • Bertone, E.; Venturello, A.; Giraudo, A.; Pellegrino, G.; Geobaldo, F. J. F. C. Simultaneous Determination by NIR Spectroscopy of the Roasting Degree and Arabica/Robusta Ratio in Roasted and Ground Coffee. Food Control. 2016, 59, 683–689. DOI: 10.1016/j.foodcont.2015.06.055.
  • Ebrahimi-Najafabadi, H.; Leardi, R.; Oliveri, P.; Chiara Casolino, M.; Jalali-Heravi, M.; Lanteri, S., et al. Detection of Addition of Barley to Coffee Using near Infrared Spectroscopy and Chemometric Techniques. Talanta. 2012, 99, 175–179. DOI: 10.1016/j.talanta.2012.05.036.
  • Santos, K. M.; Moura, M. F. V.; Azevedo, F. G.; Lima, K. M. G.; Raimundo, I. M.; Pasquini, C., et al. Classification of Brazilian Coffee Using Near-Infrared Spectroscopy and Multivariate Calibration. Anal. Lett. 2012, 45(7), 774–781.
  • Pizarro, C.; Esteban-Diez, I.; Gonzalez-Saiz, J. M. Mixture Resolution according to the Percentage of Robusta Variety in order to Detect Adulteration in Roasted Coffee by near Infrared Spectroscopy. Anal. Chim. Acta. 2007, 585(2), 266–276. DOI: 10.1016/j.aca.2006.12.057.
  • Alves, R. P.; Filho, N. R. A.; Lião, L. M.; Flores, I. S., et al. Evaluation of the Metabolic Profile of Arabica Coffee via NMR in Relation to the Time and Temperature of the Roasting Procedure. J. Braz. Chem. Soc. 2021, 32(1), 123–136.
  • Burton, I. W.; Farina, C. F. M.; Ragupathy, S.; Arunachalam, T.; Newmaster, S.; Berrué, F., et al. Quantitative NMR Methodology for the Authentication of Roasted Coffee and Prediction of Blends. J. Agric. Food Chem. 2020, 68(49), 14643–14651.
  • Milani, M. I.; Rossini, E. L.; Catelani, T. A.; Pezza, L.; Toci, A. T; Pezza, H. R., et al. Authentication of Roasted and Ground Coffee Samples Containing Multiple Adulterants Using NMR and a Chemometric Approach. Food Control. 112. 2020, 1–7.
  • Okaru, A. O.; Scharinger, A.; Rajcic de Rezende, T.; Teipel, J.; Kuballa, T.; Walch, S. G.; Lachenmeier, D. W., et al. Validation of a Quantitative Proton Nuclear Magnetic Resonance Spectroscopic Screening Method for Coffee Quality and Authenticity (NMR Coffee Screener). Foods. 2020, 9(1), 47.
  • Ribeiro, M. V. D. M.; Boralle, N.; Pezza, H. R.; Pezza, L.; Toci, A. T., et al. Authenticity of Roasted Coffee Using 1 H NMR Spectroscopy. J. Food Compost. Anal. 2017, 57, 24–30. DOI: 10.1016/j.jfca.2016.12.004.
  • Defernez, M.; Wren, E.; Watson, A. D.; Gunning, Y.; Colquhoun, I. J.; Le Gall, G.; Williamson, D.; Kemsley, E. K., et al. Low-field (1)H NMR Spectroscopy for Distinguishing between Arabica and Robusta Ground Roast Coffees. Food Chem. 2017, 216, 106–113. DOI: 10.1016/j.foodchem.2016.08.028.
  • Arana, V. A.; Medina, J.; Alarcon, R.; Moreno, E.,;Heintz, L.Schäfer, H. ;Wist, J., et al. Coffee’s Country of Origin Determined by NMR: The Colombian Case. Food Chem. 2015, 175, 500–506. DOI: 10.1016/j.foodchem.2014.11.160.
  • Consonni, R.; Cagliani, L. R.; Cogliati, C. NMR Based Geographical Characterization of Roasted Coffee. Talanta. 2012, 88, 420–426.
  • Hung, Y.-C.; Lee, F.-S.; Lin, C.-I. Classification of Coffee Bean Categories Based upon Analysis of Fatty Acid Ingredients. J. Food Process. Preserv. 2021, 45(9). DOI: 10.1111/jfpp.15703.
  • Konieczka, P. P.; Aliño-González, M. J.; Ferreiro-González, M.; Barbero, G. F.; Palma, M., et al. Characterization of Arabica and Robusta Coffees by Ion Mobility Sum Spectrum. Sensors.2020, 20(11), 1–15.
  • Jumhawan, U.; Putri, S. P.; Bamba, T.; Fukusaki, E., et al. Quantification of Coffee Blends for Authentication of Asian Palm Civet Coffee (Kopi Luwak) via Metabolomics: A Proof of Concept. J. Biosci. Bioeng. 2016, 122(1), 79–84.
  • Toledo, B. R.; Hantao, L. W.; Ho, T. D.; Augusto, F.; Anderson, J. L., et al. A Chemometric Approach toward the Detection and Quantification of Coffee Adulteration by solid-phase Microextraction Using Polymeric Ionic Liquid Sorbent Coatings. J. Chromatogr. A. 2014, 1346, 1–7. DOI: 10.1016/j.chroma.2014.04.035.
  • Romano, R.; Santini, A.; Le Grottaglie, L.; Manzo, N.; Visconti, A.; Ritieni, A., et al. Identification Markers Based on Fatty Acid Composition to Differentiate between Roasted Arabica and Canephora (Robusta) Coffee Varieties in Mixtures. J. Food Compost. Anal. 2014, 35(1), 1–9.
  • Oliveira, R. C. S.; Oliveira, L. S.; Franca, A. S.; Augusti, R., et al. Evaluation of the Potential of SPME-GC-MS and Chemometrics to Detect Adulteration of Ground Roasted Coffee with Roasted Barley. J. Food Compost. Anal. 2009, 22(3), 257–261.
  • Mondello, L.; Casilli, A.; Tranchida, P. Q.; Dugo, P.; Costa, R.; Festa, S.; Dugo, G., et al. Comprehensive Multidimensional GC for the Characterization of Roasted Coffee Beans. J. Sep. Sci. 2004, 27(5–6), 442–450.
  • Bosmali, I.; Lagiotis, G.; Stavridou, E.; Haider, N.; Osathanunkul, M.; Pasentsis, K.; Madesis, P., et al. Novel Authentication Approach for Coffee Beans and the Brewed Beverage Using a nuclear-based species-specific Marker Coupled with High Resolution Melting Analysis. Lwt, 137. 2021, 1–8.
  • Haider, N.; Nabulsi, I. Identification of Coffee and a Set of Its Potential PlantDerived Adulterants Using ccSSR-PCR Markers. Inn Sci Info Services Net 2021, 18(1), 312–327.
  • Combes, M.-C.; Joët, T.; Lashermes, P. Development of a Rapid and Efficient DNA-based Method to Detect and Quantify Adulterations in Coffee (Arabica versus Robusta). Food Control. 2018, 88, 198–206.
  • Uncu, A. T.; Uncu, A. O. Plastid trnH-psbA Intergenic Spacer Serves as a PCR-based Marker to Detect Common Grain Adulterants of Coffee (Coffea Arabica L.). Food Control. 2018, 91, 32–39. DOI: 10.1016/j.foodcont.2018.03.029.
  • Ferreira, T.; Farah, A.; Oliveira, T. C.; Lima, I. S.; Vitório, F.; Oliveira, E. M. M., et al. Using Real-Time PCR as a Tool for Monitoring the Authenticity of Commercial Coffees. Food Chem. 2016, 199, 433–438. DOI: 10.1016/j.foodchem.2015.12.045.
  • Spaniolas, S.; Tsachaki, M.; Bennett, M. J.; Tucker, G. A., et al. Evaluation of DNA Extraction Methods from Green and Roasted Coffee Beans. Food Control. 2008, 19(3), 257–262.
  • Spaniolas, S.; May, S. T.; Bennett, M. J.; Tucker, G. A., et al. Authentication of Coffee by Means of PCR-RFLP Analysis and lab-on-a-chip Capillary Electrophoresis. J. Agric. Food Chem. 2006, 54(20), 7466–7470.
  • Rodrigues, D. R.; Fragoso, W. D.; Lemos, S. G. Electronic Tongue Based on a Single Impedimetric Sensor and Complex numbers-supervised Pattern Recognition. Electrochim. Acta. 2021, 397, 139312. DOI: 10.1016/j.electacta.2021.139312.
  • Morais, T. C. B.; Rodrigues, D. R.; Souto, U. T. C. P.; Lemos, S. G., et al. A Simple Voltammetric Electronic Tongue for the Analysis of Coffee Adulterations. Food Chem. 2019, 273, 31–38. DOI: 10.1016/j.foodchem.2018.04.136.
  • Arrieta, A. A.; Arrieta, P. L.; Mendoza, J. M. Analysis of Coffee Adulterated with Roasted Corn and Roasted Soybean Using Voltammetric Electronic Tongue. Acta Scientiarum Polonorum Technologia Alimentaria. 2019, 18(1), 35–41.
  • Daniel, D.; Lopes, F. S.; Santos, V. B. D.; Do Lago, C. L., et al. Detection of Coffee Adulteration with Soybean and Corn by Capillary electrophoresis-tandem Mass Spectrometry. Food Chem. 2018, 243, 305–310. DOI: 10.1016/j.foodchem.2017.09.140.
  • Yulia, M.; Suhandy, D. Quantification of Corn Adulteration in Wet and Dry-Processed Peaberry Ground Roasted Coffees by UV-Vis Spectroscopy and Chemometrics. Molecules. 2021, 26(20), 6091. DOI: 10.3390/molecules26206091.
  • Dankowska, A.; Domagala, A.; Kowalewski, W. Quantification of Coffea Arabica and Coffea Canephora Var. Robusta Concentration in Blends by Means of Synchronous Fluorescence and UV-Vis Spectroscopies. Talanta. 2017, 172, 215–220. DOI: 10.1016/j.talanta.2017.05.036.
  • Suhandy, D.; Yulia, M. The Use of Partial Least Square Regression and Spectral Data in UV-Visible Region for Quantification of Adulteration in Indonesian Palm Civet Coffee. Int. J. Food Sci. 2017, 2017, 6274178. DOI: 10.1155/2017/6274178.
  • Suhandy, D.; Yulia, M. Peaberry Coffee Discrimination Using UV-visible Spectroscopy Combined with SIMCA and PLS-DA. Int. J. Food Prop. 2017, 20(sup1), S331–S339. DOI: 10.1080/10942912.2017.1296861.
  • Souto, U. T. D. C. P.; Barbosa, M. F.; Dantas, H. V.; de Pontes, A. S.; Lyra, W. D. S.; Diniz, P. H. G. D.; de Araújo, M. C. U.; da Silva, E. C., et al. Identification of Adulteration in Ground Roasted Coffees Using UV–Vis Spectroscopy and SPA-LDA. LWT - Food Sci. Technol. 2015, 63(2), 1037–1041.
  • Agnoletti, Z.; da S. Oliveira, E. C.; F. Pinheiro, P.; H. Saraiva, S., et al. Discrimination of Arabica and Conilon Coffee from Physicochemical Properties Allied to Chemometrics. Revista Virtual de Química. 2019, 11(3), 785–805.
  • Pradana-López, S.; Pérez-Calabuig, A. M.; Cancilla, J. C.; Lozano, M. Á.; Rodrigo, C.; Mena, M. L.; Torrecilla, J. S., et al. Deep Transfer Learning to Verify Quality and Safety of Ground Coffee. Food Control. 2021, 122, 107801. DOI: 10.1016/j.foodcont.2020.107801.
  • Souto, U. T. D. C. P.; Barbosa, M. F.; Dantas, H. V.; de Pontes, A. S.; Lyra, W. D. S.; Diniz, P. H. G. D.; de Araújo, M. C. U.; da Silva, E. C., et al. Screening for Coffee Adulteration Using Digital Images and SPA-LDA. Food Anal. Methods. 2014, 8(6), 1515–1521.
  • Gerbig, S.; Neese, S.; Penner, A.; Spengler, B.; Schulz, S., et al. Real-Time Food Authentication Using a Miniature Mass Spectrometer. Anal. Chem. 2017, 89(20), 10717–10725.
  • Aquino, F. J. T.; Augusti, R.; Alves, J. D. O.; Diniz, M. E. R.; Morais, S. A. L.; Alves, B. H. P.; Nascimento, E. A.; Sabino, A. A., et al. Direct Infusion Electrospray Ionization Mass Spectrometry Applied to the Detection of Forgeries: Roasted Coffees Adulterated with Their Husks. Microchem. J. 2014, 117, 127–132. DOI: 10.1016/j.microc.2014.06.016.
  • Garrett, R.; Vaz, B. G.; Hovell, A. M. C.; Eberlin, M. N.; Rezende, C. M., et al. Arabica and Robusta Coffees: Identification of Major Polar Compounds and Quantification of Blends by direct-infusion Electrospray ionization-mass Spectrometry. J. Agric. Food Chem. 2012, 60(17), 4253–4258.
  • Tavares, K. M.; Pereira, R. G. F. A.; Nunes, C. A.; Pinheiro, A. C. M.; Rodarte, M. P.; Guerreiro, M. C., et al. Espectroscopia No Infravermelho Médio E Análise Sensorial Aplicada À Detecção de Adulteração de Café Torrado Por Adição de Cascas de Café. Quím. Nova. 2012, 35(6), 1164–1168.
  • Pereira, L. H.; Catelani, T. A.; Costa, E. D. M.; Garcia, J. S.; Trevisan, M. G., et al. Coffee Adulterant Quantification by Derivative Thermogravimetry and Chemometrics Analysis. J. Therm. Anal. Calorim. 147,7353–7362. 2021.
  • Muñiz-Valencia, R.; Jurado, J. M.; Ceballos-Magaña, S. G.; Alcázar, Á.; Hernández-Díaz, J., et al. Characterization of Mexican Coffee according to Mineral Contents by Means of Multilayer Perceptrons Artificial Neural Networks. J. Food Compost. Anal. 2014, 34(1), 7–11.
  • Ameca-Veneroso, C.; Sánchez‐Arellano, L.; Ramón‐Canul, L. G.; Herrera‐Corredor, J. A.; Cuervo‐Osorio, V. D.; Quetz‐Aguirre, E. M.; Rodríguez‐Miranda, J.; Cabal‐Prieto, A.; Ramírez‐Rivera, E. D. J., et al. A Modified Version of the Sensory Pivot Technique as A Possible Tool Forthe Analysis of Food Adulteration: A Case of Coffee. J. Sens. Stud. 2021, 36(6). doi:10.1111/joss.12705
  • Sano, E. E.; Assad, E. D.; Cunha, S. A. R.; CORREA, T. A. N. I. A. B. S.; RODRIGUES, H. R. Quantifying Adulteration in Roast Coffee Powders by Digital Image Processing. J. Food Qual. 2003, 26(2), 123–134. DOI: 10.1111/j.1745-4557.2003.tb00232.x.
  • Araujo, T. K. L.; Nóbrega, R. O.; de Sousa Fernandes, D. D.; de Araújo, M. C. U.; Diniz, P. H. G. D.; da Silva, E. C. Non-destructive Authentication of Gourmet Ground Roasted Coffees Using NIR Spectroscopy and Digital Images. Food Chem. 2021, 364, 130452. DOI: 10.1016/j.foodchem.2021.130452.
  • Cestari, A. Development of a Fast and Simple Method to Identify Pure Arabica Coffee and Blended Coffee by Infrared Spectroscopy. J. Food Sci. Technol. 2021, 58(9), 3645–3654. DOI: 10.1007/s13197-021-05176-4.
  • Monteiro, P. I.; Santos, J. S.; Rodionova, O. Y.; Pomerantsev, A.; Chaves, E. S.; Rosso, N. D.; Granato, D., et al. Chemometric Authentication of Brazilian Coffees Based on Chemical Profiling. J. Food Sci. 2019, 84(11), 3099–3108.
  • Sezer, B.; Apaydin, H.; Bilge, G.; Boyaci, I. H. Coffee Arabica Adulteration: Detection of Wheat, Corn and Chickpea. Food Chem. 2018, 264, 142–148. DOI: 10.1016/j.foodchem.2018.05.037.
  • Gunning, Y.; Defernez, M.; Watson, A. D.; Beadman, N., Colquhoun, I. J.; Le Gall, G.; Kemsley, E. K. 16-O-methylcafestol Is Present in Ground Roast Arabica Coffees: Implications for Authenticity Testing. Food Chem. 2018, 248, 52–60. DOI: 10.1016/j.foodchem.2017.12.034.
  • Monteiro, P. I.; Santos, J. S.; Brizola, V. R. A.; Deolindo, C. T. P.; Koot, A.; Boerrigter-Eenling, R.; Ruth, S.; Georgouli, K.; Koidis, A.; Granato, D., et al. Comparison between Proton Transfer Reaction Mass Spectrometry and near Infrared Spectroscopy for the Authentication of Brazilian Coffee: A Preliminary Chemometric Study. Food Control. 91. 2018, 276–283.
  • Medina, J.; Caro Rodríguez, D.; Arana, V. A.; Bernal, A.; Esseiva, P.; Wist, J. Comparison of Attenuated Total Reflectance Mid-Infrared, near Infrared, and 1 H-Nuclear Magnetic Resonance Spectroscopies for the Determination of Coffee’s Geographical Origin. Int. J. Anal. Chem. 2017, 2017, 7210463. DOI: 10.1155/2017/7210463.
  • Brondi, A. M.; Torres, C.; Garcia, J. S.; Trevisan, M. G., et al. Differential Scanning Calorimetry and Infrared Spectroscopy Combined with Chemometric Analysis to the Determination of Coffee Adulteration by Corn. J. Braz. Chem. Soc. 2017, 28(7), 1308–1314.
  • Correia, R. M.; Loureiro, L. B.; Rodrigues, R. R. T.; Costa, H. B.; Oliveira, B. G.; Filgueiras, P. R.; Thompson, C. J.; Lacerda, V.; Romão, W., et al. Chemical Profiles of Robusta and Arabica Coffee by ESI(−)FT-ICR MS and ATR-FTIR: A Quantitative Approach. Anal. Methods. 2016, 8(42), 7678–7688.
  • Winkler-Moser, J. K.; Singh, M.; Rennick, K. A.; Bakota, E. L.; Jham, G.; Liu, S. X.; Vaughn, S. F., et al. Detection of Corn Adulteration in Brazilian Coffee (Coffea Arabica) by Tocopherol Profiling and Near-Infrared (NIR) Spectroscopy. J. Agric. Food Chem. 2015, 63(49), 10662–10668.
  • Assad, E. D.; Sano, E. E.; Cunha, S. A. R. D.; Correa, T. B. S.; Rodrigues, H. R., et al. Identificação de impurezas e misturas em pó de café por meio de comportamento espectral e análise de imagens digitais. Pesq. Agropec. Bras. 2002, 37(2), 211–216.
  • Várvölgyi, E.; Werum, T.; Dénes, L.; Soós, J.; Szabó, G.; Felföldi, J.; Esper, G.; Kovács, Z., et al. Vision System and Electronic Tongue Application to Detect Coffee Adulteration with Barley. Acta Aliment. 2014, 43(Supplement 1), 197–205.
  • Welna, M.; Szymczycha-Madeja, A.; Zyrnicki, W. Applicability of ICP-OES, UV-VIS, and FT-IR Methods for the Analysis of Coffee Products. Anal. Lett. 2013, 46(18), 2927–2940. DOI: 10.1080/00032719.2013.816963.
  • Fontes, A. S.; Bento, A. C.; Baesso, M. L.; Miranda, L. C. M., et al. Thermal Lens and pH Measurements in Pure and Adulterated Brewed Coffee. Instrum. Sci. Technol. 2006, 34(1–2), 163–181.
  • SAA, Secretaria da Agriculta e Abastecimento do Estado de São Paulo. Resolução SAA - 31, de 22 de junho de 2007. Norma de Padrões Mínimos de Qualidade para Café torrado em Grão e Torrado e Moído. . 2007. 24/25
  • SAA, Secretaria da Agriculta e Abastecimento do Estado de São Paulo. Resolução SAA - 30, de 22 de junho de 2007. Norma de Padrões Mínimos de Qualidade para Café torrado em Grão e Torrado e Moído. . 2007.
  • SAA, Secretaria da Agriculta e Abastecimento do Estado de São Paulo. Resolução SAA - 19, de 5-4-2010. 2010. Norma de Padrões Mínimos de Qualidade para Café Torrado em Grão e Torrado e Moído.
  • MAPA, Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa nº16 de 24 maio de 2010. 2010 .
  • MAPA, Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa nº7 de 22 de fevereiro de 2013. 2013.
  • MAPA, Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Portaria SDA nº 570, de 9 de maio de 2022. 2022.
  • MS, Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Resolução da Diretoria Colegia nº 14, de 28 de março de 2014. 2014.