2,068
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Granular structure, physicochemical and rheological characteristics of starch from yellow cassava (Manihot esculenta) genotypes

, , , , ORCID Icon, & show all
Pages 259-273 | Received 30 Sep 2022, Accepted 16 Dec 2022, Published online: 28 Dec 2022

References

  • Bertoft, E. Understanding Starch Structure: Recent Progress. Agronomy. 2017, 7, 56. DOI: 10.3390/agronomy7030056.
  • Zhang, Y.; Wang, Q.; Zhang, Y.; Wu, G.; Tan, L.; Zhang, Z. Effects of Moisture Content on Digestible Fragments and Molecular Structures of High Amylose Jackfruit Starch Prepared by Improved Extrusion Cooking Technology. Food Hydrocolloids. 2022, 133, 108023. DOI: 10.1016/j.foodhyd.2022.108023.
  • Beyene, G.; Solomon, F. R.; Chauhan, R. D.; Gaitan-Solis, E.; Narayanan, N.; Gehan, J.; Siritunga, D.; Stevens, R. L.; Jifon, J.; Van Eck, J., et al. Provitamin A Biofortification of Cassava Enhances Shelf Life but Reduces Dry Matter Content of Storage Roots Due to Altered Carbon Partitioning into Starch. Plant Biotechnol. J. 2018, 16, 1186–1200. DOI: 10.1111/pbi.12862.
  • Njoku, D. N.; Gracen, V. E.; Offei, S. K.; Asante, I. K.; Egesi, C. N.; Kulakow, P.; Ceballos, H. Parent-offspring Regression Analysis for Total Carotenoids and Some Agronomic Traits in Cassava. Euphytica. 2015, 206, 657–666. DOI: 10.1007/s10681-015-1482-4.
  • Esuma, W.; Kawuki, R. S.; Herselman, L.; Labuschagne, M. T. Diallel Analysis of Provitamin A Carotenoid and Dry Matter Content in Cassava (Manihot Esculenta Crantz). Breed. Sci. 2016, 66, 627–635. DOI: 10.1270/jsbbs.15159.
  • Akinwale, M. G.; Aladesanwa, R. D.; Akinyele, B. O.; Dixon, A. G. O.; Odiyi, A. C. Inheritance of ß-carotene in Cassava (Manihot Esculenta Crantz). Int. J. Genet. Mol. Biol. 2010, 2, 198–201.
  • Olayide, P.; Large, A.; Stridh, L.; Rabbi, I.; Baldermann, S.; Stavolone, L.; Alexandersson, E. Gene Expression and Metabolite Profiling of Thirteen Nigerian Cassava Landraces to Elucidate Starch and Carotenoid Composition. Agronomy. 2020, 10, 424. DOI: 10.3390/agronomy10030424.
  • Vimala, B.; Sreekanth, A.; Binu, H.; Wolfgang, G. Variability in 42 orange-fleshed Sweet Potato Hybrids for Tuber Yield and Carotene and Dry Matter Content. Gene Conserve. 2011, 40, 190–200.
  • Ortiz, S.; Valdés, M. P.; Vallejo, F. A.; Baena, D. Genetic Correlations and Path Analysis in Butternut Squash Cucurbita Moschata Duch. Rev. Fac. Nal. Agr. Medellin. 2014, 68, 7399–7409. DOI: 10.15446/rfnam.v68n1.47827.
  • Wang, L.; Xie, B.; Xiong, G.; Du, X.; Qiao, Y.; Liao, L. Study on the Granular Characteristics of Starches Separated from Chinese Rice Cultivars. Carbohydr. Polym. 2012, 87, 1038–1044. DOI: 10.1016/j.carbpol.2011.08.006.
  • Zhu, F.; Yang, X.; Cai, Y.-Z.; Bertoft, E.; Corke, H. Physicochemical Properties of Sweetpotato Starch. Starch-Starke. 2011, 63, 249–259. DOI: 10.1002/star.201000134.
  • Vimala, B.; Nambisan, B.; Thushara, R.; Unnikrishnan, M. Variability of Carotenoids in yellow-fleshed Cassava (Manihot Esculenta Crantz) Clones. Gene Conserve. 2009, 8(31).
  • AOAC. Official Methods of Analysis. In Association of Official and Analytical Chemists, Washington DC, USA 17th. 2000
  • Lawal, O. S. Composition, Physicochemical Properties and Retrogradation Characteristics of Native, Oxidised, Acetylated and acid-thinned New Cocoyam (Xanthosoma Sagittifolium) Starch. Food Chem. 2004, 87, 205–218. DOI: 10.1016/j.foodchem.2003.11.013.
  • Hoover, R.; Ratnayake, W. S. Determination of Total Amylose Content of Starch. Curr. Protocols in Food Analytical Chemistry. 2001, 1, E2–3.
  • Akonor, P. T.; Tortoe, C.; Oduro-Yeboah, C.; Saka, E. A.; Ewool, J. Physicochemical, Microstructural, and Rheological Characterization of Tigernut (Cyperus Esculentus) Starch. Int. J. Food Sci. 2019, 2019, 1–7. DOI: 10.1155/2019/3830651.
  • Zhang, P.; Whistler, R. L.; BeMiller, J. N.; Hamaker, B. R. Banana Starch: Production, Physicochemical Properties, and Digestibility: A Review. Carbohydr. Polym. 2005, 59, 443–458. DOI: 10.1016/j.carbpol.2004.10.014.
  • Gayin, J.; Bertoft, E.; Manful, J.; Yada, R. Y.; Abdel-Aal, E.-S. M. Molecular and Thermal Characterization of Starches Isolated from African Rice (Oryza Glaberrima). Starch/Starke. 2016, 68, 9–19. DOI: 10.1002/star.201500145.
  • Warren, F. J.; Gidley, M. J.; Flanagan, B. M. Infrared Spectroscopy as a Tool to Characterise Starch Ordered structure—a Joint FTIR–ATR, NMR, XRD and DSC Study. Carbohydr. Polym. 2016, 139, 35–42. DOI: 10.1016/j.carbpol.2015.11.066.
  • Nasaruddin, F.; Chin, N. L.; Yusof, Y. A. Effect of Processing on Instrumental Textural Properties of Traditional Dodol Using Back Extrusion. Int. J. Food Prop. 2012, 15(3), 495–506. DOI: 10.1080/10942912.2010.491932.
  • Pallares A. P., Miranda, B. A., Truong, N. Q. A, Kyomugasho, C., Chigwedere, C. M., Hendrickx, M., Grauwet, T., et al., 2018. Process-induced cell wall permeability modulates the in vitro starch digestion kinetics of common bean cotyledon cells. Food and Function 9, 6544–6554.
  • Delcour, J. A.; Hoseney, R. C. Principles of Cereal Science and Technology; AACC International: St. Paul, MN, 2010.
  • Hazarika, B. J.; Sit, N. Effect of Dual Modification with Hydroxypropylation and cross-linking on Physicochemical Properties of Taro Starch. Carbohydr. Polym. 2016, 140, 269–278. DOI: 10.1016/j.carbpol.2015.12.055.
  • Waterschoot, J.; Gomand, S. V.; Fierens, E.; Delcour, J. A. Production, Structure, Physicochemical and Functional Properties of Maize, Cassava, Wheat, Potato and Rice Starches. Starch/Stärke. 2015, 67, 14–29. DOI: 10.1002/star.201300238.
  • Rolland-Sabaté, A.; Sánchez, T.; Buléon, A.; Colonna, P.; Jaillais, B.; Ceballos, H.; Dufour, D. Structural Characterization of Novel Cassava Starches with Low and high-amylose Contents in Comparison with Other Commercial Sources. Food Hydrocolloids. 2012, 27(1), 161–174. DOI: 10.1016/j.foodhyd.2011.07.008.
  • Moorthy, S. N. Tropical Sources of Starch. In Starch in Food, Structure, Function and Application; Eliasson, A.-C., Ed.; Woodhead Publishing Ltd: Cambridge, 2004; pp 321–359.
  • Mweta, D. E.; Labuschane, M. T.; Koen, E.; Benesi, I. R. M, Saka, J.D.K , et al. Some Properties of Starches from Cocoyam (Colocasia Esculenta) and Cassava (Manihot Esculenta Crantz.) Grown in Malawi. Afr. J. Food Sci. 2008, 2, 102–111.
  • Ceballos, H.; Sanchez, T.; Morante, N.; Fregene, M.; Dufour, D.; Smith, A. M.; Denyer, K.; Perez, J. C.; Calle, F.; Mestres, C. Discovery of an amylose-free Starch Mutant in Cassava (Manihot Esculenta Crantz). J. Agric. Food Chem. 2007, 55, 7469–7476. DOI: 10.1021/jf070633y.
  • Vasconcelos, L. M.; Brito, A. C.; Carmo, C. D.; Oliveira, E. J. Phenotypic Diversity of Starch Granules in Cassava Germplasm. Genet. Mol. Res. 2017, 16, 1–15. DOI: 10.4238/gmr16029276.
  • Nuwamanya, E.; Baguma, Y.; Emmambux, N.; Rubaihayo, P. Crystalline and Pasting Properties of Cassava Starch are Influenced by Its Molecular Properties. Afr. J. Food Sci. 2010, 4, 8–15.
  • Gomand, S. V.; Lamberts, L.; Visser, R. G. F.; Delcour, J. A. Physicochemical Properties of Potato and Cassava Starches and Their Mutants in Relation to Their Structural Properties. Food Hydrocolloids. 2010a, 24, 424–433. DOI: 10.1016/j.foodhyd.2009.11.009.
  • Torruco-Uco, J. G.; Chel-Guerrero, L. A.; Betancur-Ancona, D. Isolation and Molecular Characterization of Makal (Xanthosoma Yucatanensis) Starch. Starch. 2006, 58, 300–307. DOI: 10.1002/star.200500451.
  • Srichuwong, S.; Sunarti, T.; Mishima, T.; Isono, N.; Hisamatsu, M. Starches from Different Botanical Sources I: Contribution of Amylopectin Fine Structure to Thermal Properties and Enzyme Digestibility. Carbohydr. Polym. 2005, 60, 529–538. DOI: 10.1016/j.carbpol.2005.03.004.
  • Kaur, A.; Singh, N.; Ezekiel, R.; Guraya, H. S. Physicochemical, Thermal and Pasting Properties of Starches Separated from Different Potato Cultivars Grown at Different Locations. Food Chem. 2007, 101, 643–651. DOI: 10.1016/j.foodchem.2006.01.054.
  • Gomand, S. V.; Lamberts, L.; Derde, L. J.; Goesaert, H.; Vandeputte, G. E.; Goderis, B.; Visser, R. G. F.; Delcour, J. A. Structural Properties and Gelatinization Characteristics of Potato and Cassava Starches and Mutants Thereof. Food Hydrocolloids. 2010b, 24, 307–317. DOI: 10.1016/j.foodhyd.2009.10.008.
  • Magallanes-Cruz, P. A. F.-S. P. C.; Bello-Perez, L. A. Starch Structure Influences Its Digestibility: A Review. J. Food Sci. 2017, 82, 2016–2023. DOI: 10.1111/1750-3841.13809.
  • Bird, A. R.; Lopez-Rubio, A.; Shrestha, A. K.; Gidley, M. J. Resistant Starch in Vitro and in Vivo: Factors Determining Yield, Structure and Physiological Relevance; eds, Kasapis, S., Norton, I. T., Ubbink, J. B. Modern Biopolymer Sciences, Academic Press: London, 2009 449–512.
  • Aprianita, A.; Purwandari, U.; Watson, B.; Vasiljevic, T. Physicochemical Properties of Flours and Starches from Selected Commercial Tubers Available in Australia. Int. Food Res. J. 2009, 16, 507–520.
  • Huang, -T.-T.; Zhou, D.-N.; Jin, Z.-Y.; Xu, X.-M. N. D. C. H.-Q. Effect of Repeated heat-moisture Treatments on Digestibility, Physicochemical and Structural Properties of Sweetpotato Starch. Food Hydrocolloids. 2016, 54, 202–210. DOI: 10.1016/j.foodhyd.2015.10.002.
  • Perez, S.; Bertoft, E. The Molecular Structures of Starch Components and Their Contribution to the Architecture of Starch Granules: A Comprehensive Review. Starch‐Stärke. 2010, 62, 389–420. DOI: 10.1002/star.201000013.
  • Charoenkul, N.; Uttapap, D.; Pathipanawat, W.; Takeda, Y. Physicochemical Characteristics of Starches and Flours from Cassava Varieties Having Different Root Textures. LWT Food Sci. Technol. 2011, 44, 1774–1781. DOI: 10.1016/j.lwt.2011.03.009.
  • Huang, Z. Q.; Lu, J. P.; Li, X. H.; Tong, Z. F. Effect of Mechanical Activation on physico-chemical Properties and Structure of Cassava Starch. Carbohydr. Polym. 2007, 68, 128‒135. DOI: 10.1016/j.carbpol.2006.07.017.
  • Rolland-Sabate, A.; Sanchez, T.; Buleon, A.; Colonna, P.; Ceballos, H.; Zhao, S. S.; Dufour, D. Molecular and supra-molecular Structure of Waxy Starches Developed from Cassava (Manihot Esculenta Crantz). Carbohydr. Polym. 2013, 92, 1451–1462. DOI: 10.1016/j.carbpol.2012.10.048.
  • Mbougueng, P. D.; Tenin, D.; Scher, J.; Tchiegang, C. Influence of Acetylation on Physicochemical, Functional and Thermal Properties of Potato and Cassava Starches. Influ. J. Food Eng. 2012, 108, 320–326. DOI: 10.1016/j.jfoodeng.2011.08.006.
  • Htoon, A.; Shrestha, A. K.; Flanagan, B. M.; Lopez-Rubio, A.; Bird, A. R.; Gilbertd, E. P.; Gidley, M. J. Effects of Processing high-amylose Maize Starches under Controlled Conditions on Structural Organisation and Amylase Digestibility. Carbohydr. Polym. 2009, 75, 236–245. DOI: 10.1016/j.carbpol.2008.06.016.
  • Dome, K.; Podgorbunskikh, E.; Bychkov, A.; Lomovsky, O. Changes in the Crystallinity Degree of Starch Having Different Types of Crystal Structure after Mechanical Pretreatment. Polymers. 2020, 12.
  • Ren, S. Comparative Analysis of Some Physicochemical Properties of 19 Kinds of Native Starches. Starch/Stärke. 2017, 68, 1600367. DOI: 10.1002/star.201600367.
  • Kaewtatin, K.; Tanrattanakul, V. Preparation of Cassava Starch Grafted with Polystyrene by Suspension Polymerization. Carbohydr. Polym. 2008, 73, 647–655. DOI: 10.1016/j.carbpol.2008.01.006.
  • Li H.; Prakash, S.; Nicholson, T.; Fitzgerald, M.; Gilbert, R.; et al., 2016, The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chemistry. 196, 702–711.
  • Shewry, P. R.; Underwood, C.; Wan, Y.; Lovegrove, A.; Bhandari, D.; Toole, G.; Mitchell, R. A. C. Storage Product Synthesis and Accumulation in Developing Grains of Wheat. J. Cereal Sci. 2009, 50, 106–112. DOI: 10.1016/j.jcs.2009.03.009.
  • Moita, B. C.; Lourenco, D. S. C. A.; Bagulho, A. S.; Beirao-da-Costa, M. L. Effect of Wheat Puroindoline Alleles on Functional Properties of Starch. Eur. Food Res. Tech. 2008, 226, 1205–1212. DOI: 10.1007/s00217-007-0711-z.
  • Ao, Z.; Jane, J. Characterization and Modeling of the A- and B- Granule Starches of Wheat, Triticale, and Barley. Carbohydr. Polym. 2007, 67, 46–55. DOI: 10.1016/j.carbpol.2006.04.013.
  • Van Soest, J. J. G.; Tournois, H.; deWit, D.; Vliegenthart, J. F. G. Short-range Structure in (Partially) Crystalline Potato Starch Determined with Attenuated Total Reflectance Fourier-transform IR Spectroscopy. Carbohydr. Res. 1995, 279, 201–2014. DOI: 10.1016/0008-6215(95)00270-7.
  • Fang, J. M.; Fowler, P. A.; Tomkinso, J.; Hill, C. A. S. The Preparation and Characterization of a Series of Chemically Modified Potato Starches. Carbohydr. Polym. 2002, 47, 245–252. DOI: 10.1016/S0144-8617(01)00187-4.
  • Sevenou, O.; Hill, S. E.; Farhat, I. A.; Mitchell, J. R. Organisation of the External Region of the Starch Granule as Determined by Infrared Spectroscopy. Int. J. Biol. Macromol. 2002, 31, 79–85. DOI: 10.1016/S0141-8130(02)00067-3.
  • Pozo, C.; Rodríguez-Llamazares, S.; Bouza, R.; Barral, L.; Castaño, J.; Müller, N.; Restrepo, I. Study of the Structural Order of Native Starch Granules Using Combined FTIR and XRD Analysis. J. Polym. Res. 2018, 25, 1–8. DOI: 10.1007/s10965-018-1651-y.
  • Afoakwa, E. O.; Budu, A. S.; Asiedu, C.; Chiwona-Karltun, L.; Nyirenda, D. B. Viscoelastic Properties and Physico-Functional Characterization of Six High Yielding Cassava Mosaic Disease-Resistant Cassava (Manihot Esculenta Crantz) Genotypes. J. Nutr. Sci. 2012, 2, 129. DOI: 10.4172/2155-9600.1000129.
  • Asare, P. A.; Galyuon, I.; Sarfo, J. K.; Tetteh, J. P. Functional and Pasting Properties of Cassava and Sweetpotato Starch Mixtures. Ghana J. Agric. Sci. 2014, 48, 77–85.
  • Kong, X.; Bertoft, E.; Bao, J.; Corke, H. Molecular Structure of Amylopectin from Amaranth Starch and Its Effect on Physicochemical Properties. Int. J. Biol. Macromol. 2008, 43, 377–382. DOI: 10.1016/j.ijbiomac.2008.07.018.
  • Sandhu, S. K.; Singh, N. Some Properties of Corn Starches II: Physicochemical, Gelatinization, Retrogradation, Pasting and Gel Texture Properties. Food Chem. 2007, 101, 1499–1507. DOI: 10.1016/j.foodchem.2006.01.060.
  • Steele, C. M.; Alsanei, W. A.; Ayanikalath, S.; Barbon, C. E.; Chen, J.; Cichero, J. A.; … Wang, H. The Influence of Food Texture and Liquid Consistency Modification on Swallowing Physiology and Function: A Systematic Review. Dysphagia. 2015, 30, 2–26. DOI: 10.1007/s00455-014-9578-x.
  • Bourne, M. Food Texture and Viscosity: Concept and Measurement, 2nd ed.; Massachusetts, USA: Academic Press. 2002, 416.
  • Yan, W.; Yin, L.; Zhang, M.; Zhang, M.; Jia, X. Gelatinization, Retrogradation and Gel Properties of Wheat starch-wheat Bran Arabinoxylan Complexes. Gels. 2021, 7, 200. DOI: 10.3390/gels7040200.
  • Li, B.; Zhang, Y.; Xu, F.; Khan, M. R.; Zhang, Y.; Huang, C.; … Liu, A. Supramolecular Structure of Artocarpus Heterophyllus Lam Seed Starch Prepared by Improved Extrusion Cooking Technology and Its Relationship with in Vitro Digestibility. Food Chem. 2021, 336, 127716. DOI: 10.1016/j.foodchem.2020.127716.