1,567
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Chemical profiling and in-vitro α-amylase inhibitory activity of Sesbania sesban and Sesbania grandiflora seeds

, &
Pages 428-436 | Received 23 Sep 2022, Accepted 05 Jan 2023, Published online: 27 Jan 2023

References

  • Verboom, W. C. The Grassland Communities of Barotseland. Tropical Agriculture. (Trinidad). 1966, 43, 107–116.
  • Gohl, B. Tropical Feeds. FAO Animal Production and Health Series Nr 12; FAO: Rome, Italy, 1981; pp 198–199.
  • Veasey, E. A.; Schammass, E. A.; Vencovsky, R.; Martins, P. S.; Bandel, G. Morphological and Agronomic Characterization and Estimates of Genetic Parameters of Sesbania Scop. (Leguminosae) Accessions. Genet. Molec. Biol. 1999, 22, 81–93. DOI: 10.1590/S1415-47571999000100017.
  • Evans, D. O.; Rotar, P. P. Sesbania in Agriculture, West View Tropical Agriculture Series No. 8; Westview press: Boulder and London, 1987.
  • Sidhuraju, P.; Vijaykumari, K.; Janardhan, K. Studies on the under Exploited Legume, Indigofera Linifolia and Sesbania Bispinosa: Nutritional and Antinutritional Factors. Inter. J. Food Sci. Nutr. 1995, 46, 195–203. DOI: 10.3109/09637489509012549.
  • National Institute of Science Communication and Information Resources CSIR. Anonymous, in ‘The Wealth of India,’ Publication and Information Directorate, CSIR, New Delhi, India. 1950, 9. 293–295.
  • Gohel, M.; Pandya, S. Phytopharmacognostical Evaluation of Sesbania Bispinosa Stem. Intern J Pharma. Sci. 2015, 6(1), 260.
  • Mazumdar, A. K.; Day, A.; Gupta, P. D. Science Culture. Composition of Dhaincha fibre (Sesbania aculeata Pers.). 1973, 39, 473.
  • Farooqui, M. I. H.; Sharma, V. N.; Farooqi, M. I. H.; Sharma, V. N. Sesbania Aculeate Pers. Seeds – A New Source for Gum. Res. & Ind. 1972, 17, 94–95.
  • Tiwari, R.; Rout, P. K.; Mishra, L. N. Simultaneous RP-HPLC-PDA-RI and quantification of Pinitol content of Sesbania bispinosa vis-a-vis-harvesting age. Plant Biosys. 2016, 924–930.
  • Chemical Profile and Antioxidant Activity of Sesbania Bispinosa (Jacq.) W. Wight Aerial Parts and Seeds Extracts. J food proc preserv. 2021. 1–12. DOI:10.1111/jfpp.15468
  • Ramith, R.; Prithvi, S. S.; Farhan, Z.; Nagendra, M. N. P. Investigation of Antihyperglycaemic Activity of Banana (Musa Sp. Var. Nanjangud Rasa Bale) Pseudostem in Normal and Diabetic Rats. J. Sci. Food Agric. 2014, 95, 165–173. DOI: 10.1002/jsfa.6698.
  • Hossain, M. A.; Becker, K. In Vitro Rumen Degradability of Crude Protein in Seeds from Four Sesbania Spp. and the Effects of Treatments Designed to Reduce the Levels of Antinutrients in the Seeds. Ani Feed Sci Technol 2002, 95, 49–62. DOI: 10.1016/S0377-8401(01)00310-8.
  • Hossain, M.; Becker, K. Nutritive Value and Antinutritional Factors in Different Varieties of Sesban Seed and Their Morphological Fractions. Food Chem. 2001, 73, 421–431. DOI: 10.1016/S0308-8146(00)00317-4.
  • Ghanshyam, P.; Chhayakanta, P.; Shankar, M. U.; Sujata, M.; Gourishyam, P.; Kumann, A. A. Investigation of Possible Hypoglycemic and Hypolipidemic Effect of Methanolic Extract of S. Grandiflora. Inter. Res. J. Pharm. 2012, 3, 275–280.
  • Manjusha, A. N.; Nitesh, G. P. Effect of Petroleum Ether Extract of Sesbania Sesban (Merr.) Roots in Streptozotocin (STZ) Induced in Mice. Apjtb. 2012, 2(3), 1254–1260. DOI: 10.1016/S2221-1691(12)60395-5.
  • Kothari, S.; Thangavelu, L.; Roy, A. Antidiabetic Activity of Sesbania grandiflora-alpha Amylase Inhibitory Effect. Japer. 2017, 7(4), 499–502.
  • Garland, S.; Goheen, S.; Donald, P.; McDonald, L.; Campbell, J. Application of Derivatization Gas chromatography/mass Spectrometry for the Identification and Quantitation of Pinitol in Plant Roots. Anal. Lett. 2009, 42, 2096–2105. DOI: 10.1080/00032710903082531.
  • Baumgartner, S.; Genner-Ritzmann, R.; Haas, J., Amado, R.; Neukom, H. Isolation and Identification of Cyclitols in Carob Pods (Ceratonia Siliqua L.). J. Agric. Food Chem. 1986, 34, 827–829. DOI: 10.1021/jf00071a015.
  • Obadoni, B. O.; Ochuko, P. O. Phytochemical Studies and Comparative Efficacy of the Crude Extracts of Some Homeostatic Plants in Edo and Delta States of Nigeria. Global J. Pure and App. Sci. 2001, 8, 203–208. DOI: 10.4314/gjpas.v8i2.16033.
  • Ruiz-Matute, A. I.; Hernández-Hernández, O.; Rodríguez-Sánchez, S.; Sanz, M. L.; Martínez, C. I. Derivatization of Carbohydrates for GC and GC–MS Analyses. J Chromatography B 2011, 879, 1226–1240. DOI: 10.1016/j.jchromb.2010.11.013.
  • Ruiz-Aceituno, L.; Rodriguez-Sanchez, S.; Ruiz-Matute, A. I.; Ramos, L.; Soria, A. C.; Sanz, M. L. Optimisation of a Biotechnological Procedure for Selective Fractionation of Bioactive Inositols in Edible Legume Extracts, J. Sci. Food Agric. 2013, 93, 2797–2803. DOI: 10.1002/jsfa.6103.
  • Nasar-Abbas, S. M.; EHuma, Z.; Vu, T.-H. Carob Kibble: A bioactive-rich Food Ingredient. Comp. Rev. Food Sci. Food Safety. 2016, 15, 63–72. DOI: 10.1111/1541-4337.12177.
  • Martin, S. A.; Brash, A. R.; Murphy, R. C. The Discovery and Early Structural Studies of Arachidonic Acid. J. Lipid Res. 2016, 57(7), 1126–1132. DOI: 10.1194/jlr.R068072.
  • Tallima, H.; Ridi, R. Arachidonic Acid: Physiological Roles and Potential Health benefits-a Review. J Ad. Res. 2018, 11, 33–41. DOI: 10.1016/j.jare.2017.11.004.
  • Turhan, I. Relationship between Sugar Profile and D-pinitol Content of Pods of Wild and Cultivated Types of Carob Bean (Ceratonia Siliqua L.). Inter. J Food Proper 2014, 17, 363–370. DOI: 10.1080/10942912.2011.631255.
  • Narayanan, C. R.; Joshi, D. D.; Mujumdar, A. M.; Dhekne, V. V. Pinitol, a New Antidiabetic Compound from the Leaves of Bougainvillea Spectabilis. Curr. Sci. 1987, 56, 139–141.
  • Kumar, B. D.; Mitra, A.; Manjunatha, M. A. Comparative Study of alpha-amylase Inhibitory Activities of Common Antidiabetic Plants of Kharagpur 1 Block. Inter J Green Pharm 2010, 4, 115–121. DOI: 10.4103/0973-8258.63887.
  • Roy, A.; Geetha, R. V. In Vitro a -amylase and a -glucosidase Inhibitory Activities of the Ethanolic Extract of Dioscorea Villosa Tubers. Int. J. Pharm. Bio. Sci. 2013, 4;49–54. DOI: 10.1016/0006-291x(75)90506-9.