1,688
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Effect of lactoferrin supplementation on composition, fatty acids composition, lipolysis and sensory characteristics of cheddar cheese

, , ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 437-452 | Received 17 Oct 2022, Accepted 06 Jan 2023, Published online: 27 Jan 2023

References

  • Madureira, A.; Tavares, T.; Gomes, A. M. P.; Pintado, M.; Malcata, F. X. Invited Review: Physiological Properties of Bioactive Peptides Obtained from Whey Proteins. J. Dairy Sci. 2010, 93(2), 437–455. DOI: 10.3168/jds.2009-2566.
  • Baker, E. N.; Baker, H. M. A Structural Framework for Understanding the Multifunctional Character of Lactoferrin. Biochimie. 2009, 91(1), 3–10. DOI: 10.1016/j.biochi.2008.05.006.
  • Alkon, E. Laktoferrin ve Gõdalarda Kullanõmõ. Gõda ve Yem Bilimi Teknolojisi Dergisi. 2008, 10, 31–38.
  • Santos, J. C.; Sousa, R. C.; Otoni, C. G.; Moraes, A. R.; Souza, V. G.; Medeiros, E. A.; Espitia, P. J.; Pires, A. C.; Coimbra, J. S.; Soares, N. F. Nisin and Other Antimicrobial Peptides: Production, Mechanisms of Action, and Application in Active Food Packaging. Innov. Food Sci. Emerg. Technol. 2018, 48, 179–194. DOI: 10.1016/j.ifset.2018.06.008.
  • Farnaud, S.; Evans, R. W. Immunological System? New Res. Immunol. 2005, 47.
  • Jenssen, H.; Hancock, R. E. Antimicrobial Properties of Lactoferrin. Biochimie. 2009, 91(1), 19–29. DOI: 10.1016/j.biochi.2008.05.015.
  • Tomita, M.; Wakabayashi, H.; Shin, K.; Yamauchi, K.; Yaeshima, T.; Iwatsuki, K. Twenty-five Years of Research on Bovine Lactoferrin Applications. Biochimie. 2009, 91(1), 52–57. DOI: 10.1016/j.biochi.2008.05.021.
  • Acero-Lopez, A.; Schell, P.; Corredig, M.; Alexander, M. Characterization of Lactoferrin oil-in-water Emulsions and Their Stability in Recombined Milk. J. Dairy Res. 2010, 77(4), 445–451. DOI: 10.1017/S0022029910000622.
  • Yõlmaz, L.; Bayizit, A. A.; Yõlsay, Ö. T. Süt Proteinlerinin Yenilebilir Film Ve Kaplamalarda Kullanõlmasõ. Gõda Teknolojileri Elektronik Dergisi. 2007, 1, 59–64.
  • Shah, N. P. Functional Foods from Probiotics and Prebiotics: Functional Foods from Probiotics and Prebiotics. Food Technol. 2001, 55(11), 46–53.
  • Takahashi, Y.; Takeda, C.; Seto, I.; Kawano, G.; Machida, Y. Formulation and Evaluation of Lactoferrin Bioadhesive Tablets. Int. J. Pharm. 2007, 343(1–2), 220–227. DOI: 10.1016/j.ijpharm.2007.05.032.
  • Franco, I.; Castillo, E.; Pérez, M. D.; Calvo, M.; Sánchez, L. Effect of Bovine Lactoferrin Addition to Milk in Yogurt Manufacturing. J. Dairy Sci. 2010, 93(10), 4480–4489. DOI: 10.3168/jds.2009-3006.
  • AOAC. Official Methods of Analysis of the Association of Analytical Chemists International. Official Methods; USA: Gaithersburg, MD, 2005.
  • Simona, K.; Miroslava, K.; Juraj, Č.; Peter, H.; Ľubomír, L. Evaluation of Microbiological Quality of Selected Cheeses during Storage. Potravinárstvo. 2015, 9(1), 143–148. DOI: 10.5219/463.
  • Osel, N.; Planinšek Parfant, T.; Kristl, A.; Stability-Indicating Analytical, R. R. Approach for Stability Evaluation of Lactoferrin. Pharmaceutics. 2021, 13(7), 1065. DOI: 10.3390/pharmaceutics13071065.
  • Yao, X.; Bunt, C.; Cornish, J.; Quek, S. Y.; Improved, W. J. RP‐HPLC Method for Determination of Bovine Lactoferrin and Its Proteolytic Degradation in Simulated Gastrointestinal Fluids. Biomed. Chromatogr. 2013, 27(2), 197–202. DOI: 10.1002/bmc.2771.
  • Dasgupta, N.; De, B. Antioxidant Activity of Some Leafy Vegetables of India: A Comparative Study. Food Chem. 2007, 101(2), 471–474. DOI: 10.1016/j.foodchem.2006.02.003.
  • Batool, M.; Nadeem, M.; Imran, M.; Gulzar, N.; Shahid, M. Q.; Shahbaz, M.; Ajmal, M.; Khan, I. T. Impact of Vitamin E and Selenium on Antioxidant Capacity and Lipid Oxidation of Cheddar Cheese in Accelerated Ripening. Lipids Health Dis. 2018, 17(1), 1–14. DOI: 10.1186/s12944-018-0735-3.
  • Fagali, N.; Catalá, A. Antioxidant Activity of Conjugated Linoleic Acid Isomers, Linoleic Acid and Its Methyl Ester Determined by Photoemission and DPPH Techniques. Biophys. Chem. 2008, 137(1), 56–62. DOI: 10.1016/j.bpc.2008.07.001.
  • Qian, M. Gas Chromatography, Food Analysis Laboratory Manual; Kluwer academic publishers: New York, 2003.
  • Dinkçi, N.; Kesenkaş, H.; Seçkin, A. K.; Kınık, Ö.; Gönç, S. Influence of a Vegetable Fat Blend on the Texture, Microstructure and Sensory Properties of Kashar Cheese. Grasas y Aceites. 2011, 62(3), 275–283. DOI: 10.3989/gya.091810.
  • Rudel, L. L.; Morris, M. D. Determination of Cholesterol Using O-Phthalaldehyde. J. Lipid Res. 1973, 14(3), 364–366. DOI: 10.1016/S0022-2275(20).
  • Iso, I.; STANDARD, B. Milk and Milk Products. Sensory analysis–Part 3: Guidance on a Method for Evaluation of Compliance with Product Specifications for Sensory Properties by Scoring. International Organization for Standardization(ISO). Switzerland. 2009: Geneva, 1–9.
  • Shashikumar, C.; Puranik, D. Study on Use of Lactoferrin for the Biopreservation of Paneer. Trop. Agric. Res. 2011, 23(1), 70–76. DOI: 10.4038/tar.v23i1.4633.
  • Umuhumuza, L. C.; Wei-min, N.; Sun, X. Effect of Bovine Lactoferrin and Casein Peptide Powder on Microbial Growth and Glucose Utilization by Microorganisms in Pork Meat during Storage at 4 C. Pak. J. Nutr. 2011, 10(3), 208–213. DOI: 10.3923/pjn.2011.208.213.
  • Ikram, A.; Nadeem, M.; Imran, M. Impact of Vitamin A Supplementation on Composition, Lipolysis, Stability, and Sensory of Refrigerated Stored Cheddar Cheese. J. Food Process. Preserv. 2021, 45(7), e15651. DOI: 10.1111/jfpp.15651.
  • Hughes, K.; Willenberg, B. Using and Storing Cheddar Cheese. Department of Food Science and Human Nutrition, University of Missouri Columbia. Human Environmental Science Publication GH1287. 1993, 1–2.
  • Murtaza, M. A.; Huma, N.; Sameen, A.; Murtaza, M. S.; Mahmood, S.; Mueen-ud-Din, G.; Meraj, A. Texture, Flavor, and Sensory Quality of Buffalo Milk Cheddar Cheese as Influenced by Reducing Sodium Salt Content. J. Dairy Sci. 2014, 97(11), 6700–6707. DOI: 10.3168/jds.2014-8046.
  • Folkertsma, B.; Fox, P.; McSweeney, P. Accelerated Ripening of Cheddar Cheese at Elevated Temperatures. Int. Dairy J. 1996, 6(11–12), 1117–1134. DOI: 10.1016/0958-6946(95).
  • Fitzsimons, N. A.; Cogan, T. M.; Condon, S.; Beresford, T. Spatial and Temporal Distribution of Non-starter Lactic Acid Bacteria in Cheddar Cheese. J. Appl. Microbiol. 2001, 90(4), 600–608. DOI: 10.1046/j.1365-2672.2001.01285.x.
  • Fitzsimons, N. A.; Cogan, T. M.; Condon, S.; Beresford, T. Phenotypic and Genotypic Characterization of Non-starter Lactic Acid Bacteria in Mature Cheddar Cheese. Appl. Environ. Microbiol. 1999, 65(8), 3418–3426. DOI: 10.1128/AEM.65.8.3418-3426.1999.
  • Kim, W. S.; Ohashi, M.; Tanaka, T.; Kumura, H.; Kim, G. Y.; Kwon, I. K.; Goh, J. S.; Shimazaki, K. I. Growth-promoting Effects of Lactoferrin on L. acidophilus and Bifidobacterium Spp. Biometals. 2004, 17(3), 279–283. DOI: 10.1023/B:BIOM.0000027705.57430.f1.
  • Griffiths, E. A.; Duffy, L. C.; Schanbacher, F. L.; Dryja, D.; Leavens, A.; Neiswander, R. L.; Qiao, H.; DiRienzo, D.; Ogra, P. In Vitro Growth Responses of Bifidobacteria and Enteropathogens to Bovine and Human Lactoferrin. Dig. Dis. Sci. 2003, 48(7), 1324–1332. DOI: 10.1023/A:1024111310345.
  • Lee, T.; Yu, S.; Nam, M.; Kim, S.; Lee, K.; Yu, D.; Shimazaki, K. Polymorphic Sequence of Korean Native Goat Lactoferrin Exhibiting Greater Antibacterial Activity. Anim Genet. 1997, 28(5), 367–369. DOI: 10.1111/j.1365-2052.1997.00154.x.
  • Sánchez, L.; Calvo, M.; Brock, J. Biological Role of Lactoferrin. Arch. Dis. Child. 1992a, 67(5), 657–661. DOI: 10.1136/adc.67.5.657.
  • Indyk, H.; Filonzi, L. Determination of Lactoferrin in Bovine Milk, Colostrum and Infant Formulas by Optical Biosensor Analysis. Int. Dairy J. 2005, 15(5), 429–438. DOI: 10.1016/j.idairyj.2004.09.003.
  • Dupont, D.; Arnould, C.; Rolet-Repecaud, O.; Duboz, G.; Faurie, F.; Martin, B.; Beauvier, E. Determination of Bovine Lactoferrin Concentrations in Cheese with Specific Monoclonal Antibodies. Int. Dairy J. 2006, 16(9), 1081–1087. DOI: 10.1016/j.idairyj.2005.09.012.
  • Sies, H. Total Antioxidant Capacity: Appraisal of a Concept. Nutr. J. 2007, 137(6), 1493–1495. DOI: 10.1093/jn/137.6.1493.
  • Gupta, A.; Mann, B.; Kumar, R.; Sangwan, R. B. Antioxidant Activity of Cheddar Cheeses at Different Stages of Ripening. Int. J. Dairy Technol. 2009, 62(3), 339–347. DOI: 10.1093/jn/137.6.1493.
  • Karagözlü, C.; Peyniraltõ Suyu, B. M. Proteinlerinin Fonksiyonel Özellikleri Ve Sa÷lõk Üzerine Etkileri. Ege. Üniv. Ziraat. Fak. Derg. 2004, 41(2), 197–207.
  • Mayeur, S.; Spahis, S.; Pouliot, Y.; Levy, E. Lactoferrin, a Pleiotropic Protein in Health and Disease. Antioxid. Redox. Signaling. 2016, 24(14), 813–836. DOI: 10.1089/ars.2015.6458.
  • Nadeem, M.; Abdullah, M.; Hussain, I. Improvement of the Oxidative Stability of Butter Oil by Blending with Moringa oleifera Oil. J. Food Process. Preserv. 2014, 38(4), 1491–1500. DOI: 10.1111/jfpp.12108.
  • Nadeem, M.; Imran, M.; Taj, I.; Ajmal, M.; Junaid, M. Omega-3 Fatty Acids, Phenolic Compounds and Antioxidant Characteristics of Chia Oil Supplemented Margarine. Lipids Health Dis. 2017, 16(1), 1–12. DOI: 10.1186/s12944-017-0490-x.
  • Ullah, R.; Nadeem, M.; Imran, M.; Taj Khan, I.; Shahbaz, M.; Mahmud, A.; Tayyab, M. Omega Fatty Acids, Phenolic Compounds, and Lipolysis of Cheddar Cheese Supplemented with Chia (Salvia hispanica L.) Oil. J. Food Process. Preserv. 2018, 42(4), e13566. DOI: 10.1111/jfpp.13566.
  • Hernández Galán, L.; Cardador Martínez, A.; Picque, D.; Spinnler, H. E.; López Del Castillo Lozano,; Martín Del Campo; Barba, S. T. Angiotensin Converting Enzyme Inhibitors and Antioxidant Peptides Release during Ripening of Mexican Cotija Hard Cheese. J. Food Res. 2016, 5(3), 85–91. DOI: 10.5539/jfr.v5n3p85.
  • Barać, M.; Pešić, M.; Stanojević, S.; Vasić, M.; Vučić, T.; Smiljanić, M.; Žilić, S. Protein Profiles and Total Antioxidant Capacity of Water Soluble and Insoluble Protein Fractions of White Cow Cheese at Different Stage of Ripening. Mljekarstvo. 2016, 66(3), 187–197. DOI: 10.1111/ijfs.13091.
  • Branciari, R.; Ranucci, D.; Trabalza‐Marinucci, M.; Codini, M.; Orru, M.; Ortenzi, R.; Forte, C.; Ceccarini, M. R.; Valiani, A. Evaluation of the Antioxidant Properties and Oxidative Stability of Pecorino Cheese Made from the Raw Milk of Ewes Fed Rosmarinus officinalis L. Leaves. Int. J. Food Sci. 2015, 50(2), 558–565. DOI: 10.1111/ijfs.12712.
  • Singh, T.; Drake, M.; Cadwallader, K. Flavor of Cheddar Cheese: A Chemical and Sensory Perspective. Compr. Rev. Food Sci. Food Saf. 2003, 2(4), 166–189. DOI: 10.1111/j.1541-4337.2003.tb00021.x.
  • Fox, P. F.; Guinee, T. P.; Cogan, T. M.; McSweeney, P. L. Fundamentals of Cheese Science; Springer US: New York, 2017, pp 121–183. DOI: 10.1007/978-1-4899-7681-9.
  • Bertola, N. C.; Califano, A. N.; Bevilacqua, A. E.; Zaritzky, N. E. Effects of Ripening Conditions on the Texture of Gouda Cheese. Int. J. Food Sci. 2000, 35(2), 207–214. DOI: 10.1046/j.1365-2621.2000.00347.x.
  • Buffa, M.; Guamis, B.; Saldo, J.; Trujillo, A. J. Changes in Organic Acids during Ripening of Cheeses Made from Raw, Pasteurized or high-pressure-treated Goats’ Milk. LWT–Food Sci. Technol. 2004, 37(2), 247–253. DOI: 10.1016/j.lwt.2003.08.006.
  • Manolaki, P.; Katsiari, M. C.; Alichanidis, E. Effect of a Commercial Adjunct Culture on Organic Acid Contents of Low-fat Feta-type Cheese. Food Chem. 2006, 98(4), 658–663. DOI: 10.1016/j.foodchem.2005.06.031.
  • Kesenkaş, H.; Dinkçia, N.; Seçkinb, A. K.; Kinika, Ö.; Gönç, S. The Effect of Using Vegetable Fat Blend on Some Attributes of Kashar Cheese. Grasas y Aceites. 2009, 60(1), 41–47. DOI: 10.3989/gya.032408.
  • Hough, G.; Martinez, E.; Barbieri, T.; Contarini, A.; Vega, M. J. Sensory Profiling during Ripening of Reggianito Grating Cheese, Using Both Traditional Ripening and in Plastic Wrapping. Food Qual. Prefer. 1994, 5(4), 271–280. DOI: 10.1016/0950-3293(94).
  • Hannon, J. A.; Wilkinson, M. G.; Delahunty, C. M.; Wallace, J. M.; Morrissey, P. A.; Beresford, T. P. Application of Descriptive Sensory Analysis and Key Chemical Indices to Assess the Impact of Elevated Ripening Temperatures on the Acceleration of Cheddar Cheese Ripening. Int. Dairy J. 2005, 15(3), 263–273. DOI: 10.1016/j.idairyj.2004.08.001.
  • Baer, R.; Ryali, J.; Schingoethe, D.; Kasperson, K.; Donovan, D.; Hippen, A.; Franklin, S. Composition and Properties of Milk and Butter from Cows Fed Fish Oil. J. Dairy Sci. 2001, 84(2), 345–353. DOI: 10.3168/jds.S0022-0302(01)74483-9.
  • Khan, I. T.; Nadeem, M.; Imran, M.; Ajmal, M.; Ali, S. Antioxidant Activity, Fatty Acids Characterization and Oxidative Stability of Gouda Cheese Fortified with Mango (Mangifera indica L.) Kernel Fat. J. Food Sci. Technol. 2018, 55(3), 992–1002. DOI: 10.1007/s13197-017-3012-y.
  • Collins, Y. F.; McSweeney, P. L.; Wilkinson, M. G. Lipolysis and Free Fatty Acid Catabolism in Cheese: A Review of Current Knowledge. Int. Dairy J. 2003, 13(11), 841–866. DOI: 10.1016/S0958-6946(03).
  • Olsen, E.; Veberg, A.; Vogt, G.; Tomic, O.; Kirkhus, B.; Ekeberg, D.; Nilsson, A. Analysis of Early Lipid Oxidation in Salmon Pâté with Cod Liver Oil and Antioxidants. J. Food Sci. 2006, 71(3), S284–S292. DOI: 10.1111/j.1365-2621.2006.tb15655.x.
  • Pokorny, J.; Yanishlieva, N.; Gordon, M. H. Antioxidants in Food: Practical Applications. CRC Press. 2001
  • McSweeney, P. L.; Sousa, M. J. Biochemical Pathways for the Production of Flavour Compounds in Cheeses during Ripening: A Review. Le Lait. 2000, 80(3), 293–324. DOI: 10.1051/lait:2000127.
  • McSweeney, P. L. Biochemistry of Cheese Ripening. Int. J. Dairy Technol. 2004, 57(2–3), 127–144. DOI: 10.1111/j.1471-0307.2004.00147.x.
  • Frega, N.; Mozzon, M.; Lercker, G. Effects of Free Fatty Acids on Oxidative Stability of Vegetable Oil. J. Am. Oil. Chem. Soc. 1999, 76(3), 325–329. DOI: 10.1007/s11746-999-0239-4.
  • Shahidi, F.; Zhong, Y. Lipid Oxidation: Measurement Methods. Bailey’s Industrial Oil and Fat Products. 2005. DOI: 10.1002/047167849X.bio050.
  • Fedele, E.; Bergamo, P. Protein and Lipid Oxidative Stresses during Cheese Manufacture. J. Food Sci. 2001, 66(7), 932–935. DOI: 10.1111/j.1365-2621.2001.tb08214.x.
  • Gonzalez, S.; Duncan, S.; O’Keefe, S.; Sumner, S.; Herbein, J. Oxidation and Textural Characteristics of Butter and Ice Cream with Modified Fatty Acid Profiles. J. Dairy Sci. 2003, 86(1), 70–77. DOI: 10.3168/jds.S0022-0302(03).
  • Fujishiro, K.; Uchida, H.; Shimokawa, K.; Nakano, M.; Sano, F.; Ohta, T.; Kayahara, N.; Aisaka, A.; Uwajima, T. Purification and Properties of a New Brevibacterium sterolicum Cholesterol Oxidase Produced by E. Coli MM294/pnH10. FEMS Microbiol. Lett. 2002, 215(2), 243–248. DOI: 10.1111/j.1574-6968.2002.tb11397.x.
  • Juskiewicz, M.; PANFIL-KUNCEWICZ, H. Reduction of Cholesterol Content in Milk with Dairy Thermophilic Cultures Application. Milk Sci. Inter. 2003, 58(7–8), 370–373.
  • Awuchi, C. G.; Okpala, C. O. R. Natural Nutraceuticals, Especially Functional Foods, Their Major Bioactive Components, Formulation, and Health Benefits for Disease Prevention - an Overview. J. Food Bioactives. 2022, 19. DOI: 10.31665/JFB.2022.18317.
  • Awuchi, C. G.; Morya, S.; Dendegh, T. A.; Okpala, O. D. R.; Korzeniowska, M. Nanoencapsulation of Food Bioactive Constituents and Its Associated Processes: A Revisit. Bioresour. Technol. Rep. 2022, 18, (101088). DOI: 10.1016/j.biteb.2022.101088.
  • Amagwula, I. O.; Osuji, C. M.; Omeire, G. C.; Awuchi, C. G.; Okpala, C. O. R. Combined Impact of Freezing and Soaking Times on Different Cowpea Varieties’ Flour Functionality and Resultant Gel Strength, Sensory and Product Yield of Moi-Moi. AIMS Agric. Food. 2022, 7(4), 762–776. DOI: 10.3934/agrfood.2022047.
  • Amagwula, I. O.; Osuji, C. M.; Omeire, C. G.; Yezdani, U.; Khan, M. G.; Awuchi, C. G. . Effects of Soaking Time and Freezing on the Gel Strength of Moi-Moi Prepared from Cowpea Grains. Biogenesis: Jurnal Ilmiah Biologi. 2022, 10(1), 1–6. doi:10.24252/bio.v10i1.19599