1,166
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Physicochemical and antioxidant properties of extruded Rhodiola as affected by twin-screw extrusion

, ORCID Icon &
Pages 614-627 | Received 07 Nov 2022, Accepted 21 Jan 2023, Published online: 07 Feb 2023

References

  • Committee, C. F. C. Flora of China. Vol. 34. Beijing: Science Press; 1984.
  • Gregory, S; Kelly, N. Rhodiola Rosea: A Possible Plant Adaptogen. Altern. Med. Rev. 2001, 6(3), 293–302.
  • Tao, H.; Wu, X.; Cao, J.; Peng, Y.; Wang, A.; Pei, J.; Xiao, J.; Wang, S.; Wang, Y. Rhodiola Species: A Comprehensive Review of Traditional Use, Phytochemistry, Pharmacology, Toxicity, and Clinical Study. Med. Res. Rev. 2019, 39(5), 1779–1850. DOI: 10.1002/med.21564.
  • Li, T.; He, X. Quantitative Analysis of Salidroside and p-tyrosol in the Traditional Tibetan Medicine Rhodiola Crenulata by Fourier Transform Near-Infrared Spectroscopy. Chem. Pharm. Bull. 2016, 64(4), 289–296. DOI: 10.1248/cpb.c15-00558.
  • Pu, W. L.; Zhang, M. Y.; Bai, R. Y.; Sun, L. K.; Li, W. H.; Yu, Y. L.; Zhang, Y.; Song, L.; Wang, Z. X.; Peng, Y. F., et al. Anti-inflammatory Effects of Rhodiola Rosea L.: A Review. Biomed. Pharmacother. 2020, 121, 109552. DOI: 10.1016/j.biopha.2019.109552.
  • Zhao, L. Determination of the Active Ingredients of Rhodiola Extract and the Effect of Hypoxia on the Pharmacokinetic; Beijing: Master Capital Medical University, 2017.
  • Khanum, F.; Bawa, S. Rhodiola rosea: A Versatile Adaptogen. Compr. Rev. Food Sci. Food Saf. 2006, 4, 55–62. DOI: 10.1111/j.1541-4337.2005.tb00073.x.
  • Xu, Y.; Jiang, H.; Sun, C.; Adu-Frimpong, M.; Deng, W.; Yu, J.; Xu, X. Antioxidant and Hepatoprotective Effects of Purified Rhodiola Rosea Polysaccharides. Int. J. Biol. Macromol. 2018, 117, 167–178. DOI: 10.1016/j.ijbiomac.2018.05.168.
  • Gonggalanzi, G. Clinical Observation of Rhodiola Rosea in the Treatment of Acute Mountain Sickness. China Pharm. 2015, 26(20), 2818–2820.
  • Limanaqi, F.; Biagioni, F.; Busceti, C. L.; Polzella, M.; Fabrizi, C.; Fornai, F. Potential Antidepressant Effects of Scutellaria Baicalensis, Hericium Erinaceus and Rhodiola Rosea. Antioxidants. 2020, 9(3), 3. DOI: 10.3390/antiox9030234.
  • Zhuang, W.; Yue, L.; Dang, X.; Chen, F.; Gong, Y.; Lin, X.; Luo, Y. Rosenroot (Rhodiola): Potential Applications in Aging-related Diseases. Aging Dis. 2019, 10(1), 134–146. DOI: 10.14336/AD.2018.0511.
  • Kosakowska, O.; Baczek, K.; Przybyl, J. L.; Pioro-Jabrucka, E.; Czupa, W.; Synowiec, A.; Gniewosz, M.; Costa, R.; Mondello, L.; Weglarz, Z. Antioxidant and Antibacterial Activity of Roseroot (Rhodiola Rosea L.) Dry Extracts. Molecules. 2018, 23, 7.
  • Chang, Y. Study on the Hypoglycemic Effect of Irradiated Rhodiola Sachalinensis Ethanol Extract. Master. Yanbian University; 2019.
  • Wang, Y.-S.; Zhou, -S.-S.; Shen, C.-Y.; Jiang, J.-G. Isolation and Identification of Four Antioxidants from Rhodiola Crenulata and Evaluation of Their UV Photoprotection Capacity in Vitro. J. Funct. Foods. 2020, 66, 103825. DOI: 10.1016/j.jff.2020.103825.
  • Guy, R. Extrusion Cooking: Technologies and Applications; Woodhead publishing, 2001.
  • Singh, S.; Gamlath, S.; Wakeling, L. Nutritional Aspects of Food Extrusion: A Review. Int. J. Food Sci. Technol. 2007, 42(8), 916–929. DOI: 10.1111/j.1365-2621.2006.01309.x.
  • Zhang, B. Characterization Study on Screw Function of Twin-screw Extruder Doctor, Chinese Academy of Agricultural Sciences, 2010.
  • Liu, C.; Zhang, B.; Wei, Y. Research Progress on Factors Affecting the Expansion Rate of starch-based Extruded Puffed Products. J. Chin. Cereal. Oils Assoc. 2013, 28(7), 124–128.
  • Jiao, Y.; Wen, S.; Du, B.; Yang, G. Effect of Twin-screw Extrusion Conditions on Polysaccharide Extraction from Ganoderma Lucidum Spore Powder. Food Sci. 2011, 32(16), 67–70.
  • Ma, X.; Jin, Z.; Jin, T. Effects of Extrusion Conditions on Chemical Properties of Extruded White Ginseng Root Hair. J. Sci. Food Agric. 2019, 99(6), 3186–3191. DOI: 10.1002/jsfa.9535.
  • Zhang, Y.; Jin, T.; Ryu, G.; Gao, Y. Effects of Screw Configuration on Chemical Properties and Ginsenosides Content of Extruded Ginseng. Food Sci. Nutr. 2021, 9(1), 251–260. DOI: 10.1002/fsn3.1991.
  • Gui, Y.; Gil, S. K.; Ryu, G. H. Effects of Extrusion Conditions on the Physicochemical Properties of Extruded Red Ginseng. Preventive Nutr. Food Sci. 2012, 17(3), 203. DOI: 10.3746/pnf.2012.17.3.203.
  • Anderson, R. A.; Conway, H. F.; Pfeifer, V. F.; Griffin, E. L. Gelatinisation of Corn Grits by Roll and Extrusion Cooking. Cereal Sci. Today. 1969, 14(1), 4–12.
  • Jung, C.-H.; Seog, H.-M.; Choi, I.-W.; Park, M.-W.; Cho, H.-Y. Antioxidant Properties of Various Solvent Extracts from Wild Ginseng Leaves. LWT Food Sci. Technol. 2006, 39(3), 266–274. DOI: 10.1016/j.lwt.2005.01.004.
  • Li, Y.; Ku, S.; Liu, G.; Quan, X.; Kang, D. Content Determination of Salidroside in Fermented Rhodiola Sachalinensis. Med. J. Yanbian Univ. 2013, 36(4), 270–272.
  • Pazilat, B.; Wen, X.; Abdulla, A. Extraction and Bacteriostatic Activities of Chromo-cor and Saccharides from Rhodiola Rosea. Food Sci. 2006, 07, 114–118.
  • Singleton, V. L.; Orthofer, R.; Lamuela-Raventós, R. M. [14] Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of folin-ciocalteu Reagent. In Methods in Enzymology. Vol. 299. Elsevier: 1999; 152–178.
  • Tian, X.; Hongrui, S.; Lining, K.; Fenglin, L.; Zhigang, T.; Xiangying, L. Effect of Twin-Screw Extrusion on Physicochemical Properties and Quality Characteristics of Corn Flour. Food Sci. 2019, 40(17), 183–189.
  • Hagenimana, A.; Ding, X.; Fang, T. Evaluation of Rice Flour Modified by Extrusion Cooking. J. Cereal Sci. 2006, 43(1), 38–46. DOI: 10.1016/j.jcs.2005.09.003.
  • Zhang, M.; Bai, X.; Zhang, Z. Extrusion Process Improves the Functionality of Soluble Dietary Fiber in Oat Bran. J. Cereal Sci. 2011, 54(1), 98–103. DOI: 10.1016/j.jcs.2011.04.001.
  • Chang, Y. H.; Ng, P. K. Effects of Extrusion Process Variables on Extractable Ginsenosides in Wheat− Ginseng Extrudates. J. Agric. Food Chem. 2009, 57(6), 2356–2362. DOI: 10.1021/jf8031827.
  • Zhang, J.; Zhang, X.; Li, F. Antioxidant Activity of Red Ginseng water-soluble Browning Extract. J. Agric. Yanbian Univ. 2013, 35(2), 136–140.
  • Schreuders, F. K. G.; Dekkers, B. L.; Bodnár, I.; Erni, P.; Boom, R. M.; van der Goot, A. J. Comparing Structuring Potential of Pea and Soy Protein with Gluten for Meat Analogue Preparation. J. Food Eng. 2019, 261, 32–39. DOI: 10.1016/j.jfoodeng.2019.04.022.
  • Kim, B.-S.; Ryu, G.-H. Effect of Die Temperature and Dimension on Extract Characteristics of Extruded White Ginseng. J. Korean Soc. Food Sci. Nutr. 2005, 34(4), 544–548.
  • Qian, H.; Chen, B.; Huang, X.; Zhu, Y.; Zhao, B. Effect of Different Cell Wall Disruption Techniques on the Extraction Yields of Functional Components from Fruit Bodies of Phellinus Linteus. Food Sci. 2016, 37(10), 23–27.
  • Yang, Q.; Li, D.; Xu, K. Operating Parameters on twin-screw Extrusion Effect of Extrusion Machine. Food Sci. 2001, 02, 14–17.
  • Obiang-Obounou, B. W.; Ryu, G. H. The Effect of Feed Moisture and Temperature on Tannin Content, Antioxidant and Antimicrobial Activities of Extruded Chestnuts. Food Chem. 2013, 141(4), 4166–4170. DOI: 10.1016/j.foodchem.2013.06.129.
  • Basilio-Atencio, J.; Condezo-Hoyos, L.; Repo-Carrasco-Valencia, R. Effect of Extrusion Cooking on the physical-chemical Properties of Whole Kiwicha (Amaranthus Caudatus L) Flour Variety Centenario: Process Optimization. LWT. 2020, 128, 109426. DOI: 10.1016/j.lwt.2020.109426.
  • Lohani, U. C.; Muthukumarappan, K. Process Optimization for Antioxidant Enriched Sorghum Flour and Apple Pomace Based Extrudates Using Liquid CO2 Assisted Extrusion. LWT. 2017, 86, 544–554. DOI: 10.1016/j.lwt.2017.08.034.
  • Chalermchaiwat, P.; Jangchud, K.; Jangchud, A.; Charunuch, C.; Prinyawiwatkul, W. Antioxidant Activity, Free gamma-aminobutyric Acid Content, Selected Physical Properties and Consumer Acceptance of Germinated Brown Rice Extrudates as Affected by Extrusion Process. LWT Food Sci. Technol. 2015, 64(1), 490–496. DOI: 10.1016/j.lwt.2015.04.066.