1,582
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Nitric oxide alleviates chilling injury in cucumber (Cucumis sativus L.) fruit by regulating membrane lipid and energy metabolism

, , , , , , & ORCID Icon show all
Pages 1047-1061 | Received 01 Dec 2022, Accepted 01 Apr 2023, Published online: 17 Apr 2023

References

  • Sharfi, Y.; Aghdam, M. S.; Luo, Z.; Jannatizadeh, A.; Razavi, F.; Fard, J. R.; Farmani, B. Melatonin Treatment Promotes Endogenous Melatonin Accumulation and Triggers GABA Shunt Pathway Activity in Tomato Fruits During Cold Storage. Sci. Hortic. 2019, 254, 222–227. doi: 10.1016/j.scienta.2019.04.056
  • Wang, B.; Wu, C.; Wang, G.; He, J.; Zhu, S. Transcriptomic Analysis Reveals a Role of Phenylpropanoid Pathway in the Enhancement of Chilling Tolerance by Pre-Storage Cold Acclimation in Cucumber Fruit. Sci. Hortic. 2021, 288, 110282. doi: 10.1016/j.scienta.2021.110282
  • Aghdam, M. S.; Luo, Z.; Li, L.; Jannatizadeh, A.; Fard, J. R.; Pirzad, F. Melatonin Treatment Maintains Nutraceutical Properties of Pomegranate Fruits During Cold Storage. Food Chem. 2020, 303, 125385. doi: 10.1016/j.foodchem.2019.1253854
  • Wang, X. Plant Phospholipases. Ann. Rev. Plant Physiol Plant Molecul. Biol. 2001, 52, 1 211–231. doi: 10.1146/annurev.arplant.52.1.211
  • Jin, P.; Zhu, H.; Wang, L.; Shan, T.; Zheng, Y. Oxalic Acid Alleviates Chilling Injury in Peach Fruit by Regulating Energy Metabolism and Fatty Acid Contents. Food Chem. 2014, 161, 87–93. doi: 10.1016/j.foodchem.2014.03.103
  • Li, D.; Limwachiranon, J.; Li, L.; Du, R.; Luo, Z. Involvement of Energy Metabolism to Chilling Tolerance Induced by Hydrogen Sulfide in Cold-Stored Banana Fruit. Food Chem. 2016, 208, 272–278. doi: 10.1016/j.foodchem.2016.03.113
  • Zhang, W.; Zhao, H.; Jiang, H.; Xu, Y.; Cao, J.; Jiang, W. Multiple 1-MCP Treatment More Effectively Alleviated Postharvest Nectarine Chilling Injury Than Conventional One-Time 1-MCP Treatment by Regulating ROS and Energy Metabolism. Food Chem. 2020, 330, 127256. doi: 10.1016/j.foodchem.2020.127256
  • Zuo, X.; Cao, S.; Jia, W.; Zhao, Z.; Jin, P.; Zheng, Y. Near-Saturated Relative Humidity Alleviates Chilling Injury in Zucchini Fruit Through Its Regulation of Antioxidant Response and Energy Metabolism. Food Chem. 2021, 351, 129336. doi: 10.1016/j.foodchem.2021.129336
  • Li, P.; Zheng, X.; Liu, Y.; Zhu, Y. Pre-Storage Application of Oxalic Acid Alleviates Chilling Injury in Mango Fruit by Modulating Proline Metabolism and Energy Status Under Chilling Stress. Food Chem. 2014, 142, 72–78. doi: 10.1016/j.foodchem.2013.06.132
  • Zhang, L.; Wang, J. -W.; Zhou, X.; Shi, F.; Fu, W. -W.; Ji, S. -J. Effect of ATP Treatment on Enzymes Involved in Energy and Lipid Metabolisms Accompany Peel Browning of ‘Nanguo’ Pears During Shelf Life After Low Temperature Storage. Sci. Hortic. 2018, 240, 446–452. doi: 10.1016/j.scienta.2018.06.036.
  • Liu, J.; Li, F.; Li, T.; Yun, Z.; Duan, X.; Jiang, Y. Fibroin Treatment Inhibits Chilling Injury of Banana Fruit via Energy Regulation. Sci. Hortic. 2019, 248, 8–13. doi: 10.1016/j.scienta.2018.12.052
  • Diao, Q. N.; Song, Y. J.; Shi, D. M.; Qi, H. Y. Nitric Oxide Induced by Polyamines Involves Antioxidant Systems Against Chilling Stress in Tomato (Lycopersicon Esculentum Mill.) Seedling. J. Zhejiang Univ. Sci. B. 2016, 17, 916–930. doi: 10.1631/jzus.B1600102
  • Yang, H.; Wu, F.; Cheng, J. Reduced Chilling Injury in Cucumber by Nitric Oxide and the Antioxidant Response. Food Chem. 2011, 127 3, 1237–1242. doi: 10.1016/j.foodchem.2011.02.011
  • Wang, Y.; Luo, Z.; Mao, L.; Ying, T. Contribution of Polyamines Metabolism and GABA Shunt to Chilling Tolerance Induced by Nitric Oxide in Cold-Stored Banana Fruit. Food Chem. 2016, 197, 333–339. doi: 10.1016/j.foodchem.2015.10.118
  • Wang, Y.; Luo, Z.; Khan, Z. U.; Mao, L.; Ying, T. Effect of Nitric Oxide on Energy Metabolism in Postharvest Banana Fruit in Response to Chilling Stress. Postharvest. Biol. Technol. 2015, 108, 21–27. doi: 10.1016/j.postharvbio.2015.05.007
  • Zhao, Y.; Tang, J.; Song, C.; Qi, S.; Lin, Q.; Cui, Y.; Ling, J.; Duan, Y. Nitric Oxide Alleviates Chilling Injury by Regulating the Metabolism of Lipid and Cell Wall in Cold-Storage Peach Fruit. Plant Physiol. Biochem. 2021, 169, 63–69. doi: 10.1016/j.plaphy.2021.10.039
  • Jiménez-Muñoz, R.; Palma, F.; Carvajal, F.; Castro-Cegrí, A.; Pulido, A.; Jamilena, M.; Romero-Puertas, M. C.; Garrido, D. Pre-Storage Nitric Oxide Treatment Enhances Chilling Tolerance of Zucchini Fruit (Cucurbita Pepo L.) by S-Nitrosylation of Proteins and Modulation of the Antioxidant Response. Postharvest. Biol. Technol. 2021, 171, 111345. doi: 10.1016/j.postharvbio.2020.111345
  • Ghorbani, B.; Pakkish, Z.; Khezri, M. Nitric Oxide Increases Antioxidant Enzyme Activity and Reduces Chilling Injury in Orange Fruit During Storage. N. Z. J. Crop Hortic. Sci. 2017, 2 46, 101–116. doi: 10.1080/01140671.2017.1345764
  • Liu, Y.; Yang, X.; Zhu, S.; Wang, Y. Postharvest Application of MeJa and NO Reduced Chilling Injury in Cucumber (Cucumis sativus) Through Inhibition of H2O2 Accumulation. Postharvest. Biol. Technol. 2016, 119, 77–83. doi: 10.1016/j.postharvbio.2016.04.003
  • Madebo, M. P.; Luo, S. M.; Wang, L.; Zheng, Y. H.; Peng, J. Melatonin Treatment Induces Chilling Tolerance by Regulating the Contents of Polyamine, γ-Aminobutyric Acid, and Proline in Cucumber Fruit. J. Integr. Agric. 2021, 20 11, 3060–3074. doi: 10.1016/S2095-3119(20)63485-2
  • Wang, T.; Hu, M.; Yuan, D.; Yun, Z.; Gao, Z.; Su, Z.; Zhang, Z. Melatonin Alleviates Pericarp Browning in Litchi Fruit by Regulating Membrane Lipid and Energy Metabolisms. Postharvest. Biol. Technol. 2020, 160: 111066. doi: 10.1016/j.postharvbio.2019.111066
  • Luo, Z.; Li, D.; Du, R.; Mou, W. Hydrogen Sulfide Alleviates Chilling Injury of Banana Fruit by Enhanced Antioxidant System and Proline Content. Sci. Hortic. 2015, 183, 144–151. doi: 10.1016/j.scienta.2014.12.021
  • Kaya, C.; Ashraf, M.; Alyemeni, M. N.; Ahmad, P. The Role of Endogenous Nitric Oxide in Salicylic Acid-Induced Up-Regulation of Ascorbate-Glutathione Cycle Involved in Salinity Tolerance of Pepper (Capsicum Annuum L.) Plants. Plant Physiol. Biochem. 2020, 147, 10–20. doi: 10.1016/j.plaphy.2019.11.040
  • Lyons, J. M. Chilling Injury in Plants. Annu. Rev. Plant Biol. 1973, 24, 1 445–466. doi: 10.1146/annurev.pp.24.060173.002305
  • Lu, W. J.; Chen, J. Y.; Shan, W.; Min, T.; Deng, W.; Chen, Q. F.; Ji, S. J.; Kuang, J. F.; Liang, S. M. The Membrane Lipid Metabolism in Horticultural Products Suffering Chilling Injury. Food Qual. Saf. 2020, 4, 1 9–14. doi: 10.1093/fqsafe/fyaa001
  • Wang, D.; Li, L.; Xu, Y.; Limwachiranon, J.; Li, D.; Ban, Z.; Luo, Z. Effect of Exogenous Nitro Oxide on Chilling Tolerance, Polyamine, Proline, and Gamma-Aminobutyric Acid in Bamboo Shoots (Phyllostachys Praecox F. Prevernalis). J. Agric. Food Chem. 2017, 65, 28 5607–5613. doi: 10.1021/acs.jafc.7b02091
  • Zhang, T.; Che, F.; Zhang, H.; Pan, Y.; Xu, M.; Ban, Q.; Han, Y.; Rao, J. Effect of Nitric Oxide Treatment on Chilling Injury, Antioxidant Enzymes and Expression of the CmCbf1 and CmCbf3 Genes in Cold-Stored Hami Melon (Cucumis Melo L.) Fruit. Postharvest. Biol. Technol. 2017, 127, 88–98. doi: 10.1016/j.postharvbio.2017.01.005
  • Ranjbari, F.; Moradinezhad, F.; Khayyat, M. Effect of Nitric Oxide and Film Wrapping on Quality Maintenance and Alleviation of Chilling Injury on Pomegranate Fruit. J. agricultural sci. technol. 2018, 20, 1025–1036.
  • Kong, X. M.; Ge, W. Y.; Wei, B. D.; Zhou, Q.; Zhou, X.; Zhao, Y. B.; Ji, S. J. Melatonin Ameliorates Chilling Injury in Green Bell Peppers During Storage by Regulating Membrane Lipid Metabolism and Antioxidant Capacity. Postharvest. Biol. Technol. 2020, 170, 111315. doi: 10.1016/j.postharvbio.2020.111315
  • Li, Z. G.; Zeng, H. Z.; Ao, P. X.; Gong, M. Lipid Response to Short-Term Chilling Shock and Long-Term Chill Hardening in Jatropha Curcas L. Seedlings. Acta Physiologiae Plant. 2014, 36, 10 2803–2814. doi: 10.1007/s11738-014-1653-2
  • Ali, U.; Lu, S.; Fadlalla, T.; Iqbal, S.; Yue, H.; Yang, B.; Hong, Y.; Wang, X.; Guo, L. The Functions of Phospholipases and Their Hydrolysis Products in Plant Growth, Development and Stress Responses. Prog. lipid res. 2022, 86, 101158. doi: 10.1016/j.plipres.2022.101158
  • Paliyath, G.; Droillard, M. J. The Mechanisms of Membrane Deterioration and Disassembly During Senescence. Plant Physiol. Biochem. 1992, 30, 789–812.
  • Jiao, C.; Chai, Y.; Duan, Y. Inositol 1,4,5-Trisphosphate Mediates Nitric-Oxide-Induced Chilling Tolerance and Defense Response in Postharvest Peach Fruit. J. Agric. Food Chem. 2019, 67 17, 4764–4773. doi: 10.1021/acs.jafc.9b00153
  • Hu, S.; Ma, Y.; Xie, B.; Hou, Y.; Jia, Z.; Zhao, L.; Zheng, Y.; Jin, P. 24-Epibrassinolide Improves Chilling Tolerance by Regulating PpCbf5-Mediated Membrane Lipid Metabolism in Peach Fruit. Postharvest. Biol. Technol. 2022, 186, 111844. doi: 10.1016/j.postharvbio.2022.111844.
  • Wang, J.; Jiang, Y.; Li, G.; Lv, M.; Zhou, X.; Zhou, Q.; Fu, W.; Zhang, L.; Chen, Y.; Ji, S. Effect of Low Temperature Storage on Energy and Lipid Metabolisms Accompanying Peel Browning of ‘Nanguo’ Pears During Shelf Life. Postharvest. Biol. Technol. 2018, 139, 75–81. doi: 10.1016/j.postharvbio.2018.01.020
  • Pan, Y. G.; Yuan, M. Q.; Zhang, W. M.; Zhang, Z. K. Effect of Low Temperatures on Chilling Injury in Relation to Energy Status in Papaya Fruit During Storage. Postharvest. Biol. Technol. 2017, 125, 181–187. doi: 10.1016/j.postharvbio.2016.11.016
  • Pan, Y.; Zhang, S.; Yuan, M.; Song, H.; Wang, T.; Zhang, W.; Zhang, Z. Effect of Glycine Betaine on Chilling Injury in Relation to Energy Metabolism in Papaya Fruit During Cold Storage. Food Sci. Nutr. 2019, 7(3), 1123–1130. doi: 10.1002/fsn3.957
  • Zhang, W.; Jiang, H.; Cao, J.; Jiang, W. Advances in Biochemical Mechanisms and Control Technologies to Treat Chilling Injury in Postharvest Fruits and Vegetables. Trends Food Sci. Technol. 2021, 113, 355–365. doi: 10.1016/j.tifs.2021.05.009
  • Aghdam, M. S.; Jannatizadeh, A.; Luo, Z.; Paliyath, G. Ensuring Sufficient Intracellular ATP Supplying and Friendly Extracellular ATP Signaling Attenuates Stresses, Delays Senescence and Maintains Quality in Horticultural Crops During Postharvest Life. Trends Food Sci. Technol. 2018, 76, 67–81. doi: 10.1016/j.tifs.2018.04.003
  • Liu, Z.; Li, L.; Luo, Z.; Zeng, F.; Jiang, L.; Tang, K. Effect of Brassinolide on Energy Status and Proline Metabolism in Postharvest Bamboo Shoot During Chilling Stress. Postharvest. Biol. Technol. 2016, 111, 240–246. doi: 10.1016/j.postharvbio.2015.09.016.