1,761
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Changes in nutritional, physicochemical, phytochemical composition and antioxidant potential of Mahonia nepalensis fruits during ripening

ORCID Icon, , , , , & show all
Pages 1062-1078 | Received 17 Oct 2022, Accepted 14 Jan 2023, Published online: 17 Apr 2023

References

  • Hickey, M.; King, C. The Cambridge Illustrated Glossary of Botanical Terms; Cambridge University Press: United Kingdom, 2000.
  • Zhao, Y. Berry Fruit: Value-Added Products for Health Promotion, 1st ed.; CRC press: New York, 2007.
  • Bhutia, P. O.; Kewlani, P.; Pandey, A.; Rawat, S.; Bhatt, I. D. Physico-Chemical Properties and Nutritional Composition of Fruits of the Wild Himalayan Strawberry (Fragaria Nubicola Lindle.) in Different Ripening Stages. J. Berry Res. 2021, 11(3), 481–496. DOI: 10.3233/JBR-210742.
  • Bhatt, I. D.; Rawat, S.; Rawal, R. S. Antioxidants in Medicinal Plants. In Biotechnology for Medicinal Plants; Chandra, S. Lata, H. Varma, A., Eds.; Springer: Berlin, Heidelberg, 2013; pp. 295–326.
  • Li, R.; Tao, M.; Xu, T.; Pan, S.; Xu, X.; Wu, T. Small Berries as Health-Promoting Ingredients: A Review on Anti-Aging Effects and Mechanisms in Caenorhabditis Elegans. Food. Funct. 2021, 13(2), 478–500. DOI: 10.1039/D1FO02184B.
  • Hu, F. B. Plant-Based Foods and Prevention of Cardiovascular Disease: An Overview. Americ. J. Clin. Nutri. 2003, 78(3), 544S–551S. DOI: 10.1093/ajcn/78.3.544S.
  • Riboli, E.; Norat; Norat, T. T. Epidemiologic Evidence of the Protective Effect of Fruit and Vegetables on Cancer Risk. Americ. J. Clin. Nutri. 2003, 78(3), 559S–569S. DOI: 10.1093/ajcn/78.3.559S.
  • Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L. T.; Keum, N.; Norat, T.; Greenwood, D. C.; Riboli, E.; Vatten, L. J.; Tonstad, S. Fruit and Vegetable Intake and the Risk of Cardiovascular Disease, Total Cancer and All-Cause Mortality—A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Int. J. Epidemiol. 2017, 46(3), 1029–1056. DOI: 10.1093/ije/dyw319.
  • Minocha, S.; Thomas, T.; Kurpad, A. V. Are ‘Fruits and vegetables’ Intake Really What They Seem in India? Europ. J. Clin. Nutri. 2018, 72(4), 603–608. DOI: 10.1038/s41430-018-0094-1.
  • Baldermann, S.; Blagojević, L.; Frede, K.; Klopsch, R.; Neugart, S.; Neumann, A.; Ngwene, B.; Norkeweit, J.; Schröter, D.; Schröter, A., et al. Are Neglected Plants the Food for the Future? Crit. Rev. Plant Sci. 2016, 35(2), 106–119.
  • Samant, S. S.; Dhar, U. Diversity, Endemism and Economic Potential of Wild Edible Plants of Indian Himalaya. Int. J. Sust. Develop. World Ecol. 1997, 4(3), 179–191. DOI: 10.1080/13504509709469953.
  • Singh, A. V.; Asha, H. Wild Edible Fruits of Arunachal Pradesh. Int. J. Innov. Res Sci. Engineer. Technol. 2017, 6, 12203–12209.
  • He, J. M.; Mu, Q. The Medicinal Uses of the Genus Mahonia in Traditional Chinese Medicine: An Ethnopharmacological, Phytochemical and Pharmacological Review. J. Ethnopharmacol. 2015, 175, 668–683. DOI: 10.1016/j.jep.2015.09.013.
  • Houtman, R. T.; Kraan, K. J.; Kromhout, H. Mahonia aquifoliumx wagneri en hybriden. Dendroflora. 2004, M. repens, M41, 42–69.
  • Gunduz, K. Morphological and Phytochemical Properties of Mahonia aquifolium from Turkey. Pak. J. Agric. Sci. 2013, 50, 439–443.
  • Coklar, H.; Akbulut, M. Anthocyanins and Phenolic Compounds of Mahonia aquifolium Berries and Their Contributions to Antioxidant Activity. J. Funct. Foods. 2017, 35, 166–174. DOI: 10.1016/j.jff.2017.05.037.
  • Coklar, H.; Akbulut, M. Bioactive Compounds, Antioxidant Activity and Some Physicochemical Properties of the Seed and Seed-Oil of Mahonia aquifolium Berries. J. Food Measur. Character. 2019, 13(2), 269–1278. DOI: 10.1007/s11694-019-00042-6.
  • Kakar, M. U.; Li, J.; Mehboob, M. Z.; Sami, R.; Benajiba, N.; Ahmed, A.; Nazir, A.; Deng, Y.; Li, B.; Dai, R. Purification, Characterization, and Determination of Biological Activities of Water-Soluble Polysaccharides from Mahonia Bealei. Sci. Rep. 2022, 12(1), 8150. DOI: 10.1038/s41598-022-11661-3.
  • Coklar, H.; Akbulut, M. Changes in Phenolic Acids, Flavonoids, Anthocyanins, and Antioxidant Activities of Mahonia aquifolium Berries During Fruit Development and Elucidation of the Phenolic Biosynthetic Pathway. Hort. Environ. Biotech. 2021, 62(5), 785–794. DOI: 10.1007/s13580-021-00348-9.
  • Mai, N. T.; Tuan, T. A.; Huong, H. T.; VanMinh, C.; Ban, N. K.; VanKiem, P. Bisbenzylisoquinoline Alkaloids from Mahonia Nepalensis. Vietnam J. Chem. 2009, 47(3), 368.
  • Thusa, R.; Mulmi, S. Analysis of Phytoconstituents and Biological Activities of Different Parts of Mahonia Nepalensis and Berberis Aristata. Nepal J. Biotech. 2017, 5(1), 5–13. DOI: 10.3126/njb.v5i1.18864.
  • Govindachari, T. R.; Pai, B. R.; Rajadurai, S.; Ramadas, R. U. Alkaloids of Mahonia Nepalensis D.C. Proceed. Indian Acad. Sci.-A. 1958, 47(1), 41–48. DOI: 10.1007/BF03052624.
  • Mai, N. T.; Tuan, T. A.; Huong, H. T.; VanMinh, C.; Ban, N. K.; VanKiem, P. Secobisbenzylisoquinoline Alkaloid from Mahonia Nepalensis DC. Tạp. Chi. Khoa. Học. Va. Cong. Nghe. 2008, 46, 63–68.
  • Prasanna, V.; Prabha, T. N.; Tharanathan, R. N. Fruit Ripening Phenomena–An Overview. Critic. Rev. Food Sci. Nutri. 2007, 47(1), 1–19. DOI: 10.1080/10408390600976841.
  • Okwu, D.E.; Josiah, C. Evaluation of the chemical composition of two Nigerian medicinal plants.Afric. J. Biotech. 2006, 5(4), 357–361.
  • Meyers, K. J.; Watkins, C. B.; Pritts, M. P.; Liu, R. H. Antioxidant and Antiproliferative Activities of Strawberries. J. Agric. Food. Chem. 2003, 51(23), 6887–6892. DOI: 10.1021/jf034506n.
  • Bhatt, I. D.; Rawat, S.; Badhani, A.; Rawal, R. S. Nutraceutical Potential of Selected Wild Edible Fruits of the Indian Himalayan Region. Food. Chem. 2017, 215, 84–91. DOI: 10.1016/j.foodchem.2016.07.143.
  • Dhyani, P.; Bahukhandi, A.; Rawat, S.; Bhatt, I. D.; Rawal, R. S. Diversity of Bioactive Compounds and Antioxidant Activity in Delicious Group of Apple in Western Himalaya. J. Food Sci. Technol. 2018, 55(7), 2587–2599. DOI: 10.1007/s13197-018-3179-x.
  • Badhani, A.; Rawat, S.; Bhatt, I. D.; Rawal, R. S. Variation in Chemical Constituents and Antioxidant Activity in Yellow Himalayan (Rubus Ellipticus Smith) and Hill Raspberry (Rubus Niveus Thunb.). J. Food Biochem. 2015, 39(6), 663–672. DOI: 10.1111/jfbc.12172.
  • Kim, J. S. Antioxidant Activities of Selected Berries and Their Free, Esterified, and Insoluble-Bound Phenolic Acid Contents. Prevent. Nutri. Food Sci. 2018, 23(1), 35–45. DOI: 10.3746/pnf.2018.23.1.35.
  • Gibson, L.; Rupasinghe, H. V.; Forney, C. F.; Eaton, L. Characterization of Changes in Polyphenols, Antioxidant Capacity and Physico-Chemical Parameters During Lowbush Blueberry Fruit Ripening. Antioxidants. 2013, 2(4), 216–229. DOI: 10.3390/antiox2040216.
  • Marakoglu, T.; Akbulut, M.; Calisir, S. Some Physicochemical Properties of Mahonia acquifolium Fruits. Asian J. Chem. 2010, 22, 1606–1614.
  • Khromykh, N. O.; Lykholat, Y. V.; Kovalenko, I. M.; Kabar, A. M.; Didur, O. O.; Nedzvetska, M. I. Variability of the Antioxidant Properties of Berberis Fruits Depending on the Plant Species and Conditions of Habitat. Regulat. Mech. Biosyst. 2018, 9(1), 56–61. DOI: 10.15421/021807.
  • Tosun, I.; Ustun, N. S.; Tekguler, B. Physical and Chemical Changes During Ripening of Blackberry Fruits. Sci. Agric. 2008, 65(1), 87–90. DOI: 10.1590/S0103-90162008000100012.
  • Montero, T. M.; Mollá, E. M.; Esteban, R. M.; López-Andréu, F. J. Quality Attributes of Strawberry During Ripening. Sci. Hort. 1996, 65(4), 239–250. DOI: 10.1016/0304-4238(96)00892-8.
  • Famiani, F.; Battistelli, A.; Moscatello, S.; Cruz-Castillo, J. G.; Walker, R. P. The Organic Acids That are Accumulated in the Flesh of Fruits: Occurrence, Metabolism and Factors Affecting Their Contents – a Review. Revista Chapingo Seri. Horticultura. 2015, 21(2), 97–128. DOI: 10.5154/r.rchsh.2015.01.004.
  • Parry, J.; Su, L.; Luther, M.; Zhou, K.; Yurawecz, M. P.; Whittaker, P.; Yu, L. Fatty Acid Composition and Antioxidant Properties of Cold-Pressed Marionberry, Boysenberry, Red Raspberry and Blueberry Seed Oils. J. Agric. Food. Chem. 2005, 53(3), 566–573. DOI: 10.1021/jf048615t.
  • Chandra, P.; Todaria, N. P. Maturation and Ripening of Three Berberis Species from Different Altitudes. Sci. Hort. 1983, 19(1–2), 91–95. DOI: 10.1016/0304-4238(83)90048-1.
  • Biswas, A. K.; Sahoo, J.; Chatli, M. K. A Simple UV-Vis Spectrophotometric Method for Determination of β-Carotene Content in Raw Carrot, Sweet Potato and Supplemented Chicken Meat Nuggets. LWT-Food Sci. Technol. 2011, 44(8), 1809–1813. DOI: 10.1016/j.lwt.2011.03.017.
  • Singh, A.; Singh, B. K.; Deka, B. C.; Sanwal, S. K.; Patel, R. K.; Verma, M. R. The Genetic Variability, Inheritance and Inter-Relationships of Ascorbic Acid, β-Carotene, Phenol and Anthocyanin Content in Strawberry (Fragaria × Ananassa Duch.). Sci. Horticult. 2011, 129(1), 86–90. DOI: 10.1016/j.scienta.2011.03.011.
  • Biehler, E.; Mayer, F.; Hoffmann, L.; Krause, E.; Bohn, T. Comparison of 3 Spectrophotometric Methods for Carotenoid Determination in Frequently Consumed Fruits and Vegetables. J. Food Sci. 2010, 75(1), C55–61. DOI: 10.1111/j.1750-3841.2009.01417.x.
  • Suyal, R.; Bahukhandi, A.; Rawal, R. S.; Upadhyay, S. Polyphenolics and Antioxidant Activity of Mahonia Jaunsarensis Ahrendt: A Narrow Endemic to West Himalaya. Natl. Acad. Sci. Lett. 2020, 43(6), 505–508. DOI: 10.1007/s40009-020-00916-0.
  • Karuppusamy, S.; Muthuraja, G.; Rajasekaran, K. M. Antioxidant Activity of Selected Lesser Known Edible Fruits from Western Ghats of India. Indian J. Nat. Prod. Resour. 2011, 2, 174–178.
  • Arena, M. E.; Zuleta, A.; Dyner, L.; Constenla, D.; Ceci, L.; Curvetto, N. Berberis Buxifolia Fruit Growth and Ripening: Evolution in Carbohydrate and Organic Acid Contents. Sci. Hort. 2013, 158, 52–58. DOI: 10.1016/j.scienta.2013.04.026.
  • Pimpão, R. C.; Dew, T.; Oliveira, P. B.; Williamson, G.; Ferreira, R. B.; Santos, C. N. Analysis of Phenolic Compounds in Portuguese Wild and Commercial Berries After Multienzyme Hydrolysis. J. Agric. Food. Chem. 2013, 61(17), 4053–4062. DOI: 10.1021/jf305498j.
  • Andreicut, A. D.; Pârvu, A. E.; Mot, A. C.; Pârvu, M.; Fischer, F. E.; Cătoi, A. F.; Feldrihan, V.; Cecan, M.; Irimie, A. Phytochemical Analysis of Anti-Inflammatory and Antioxidant Effects of Mahonia aquifolium Flower and Fruit Extracts. OXID. MED. CELL LONGEV. 2018, 2018, 2879793. DOI: 10.1155/2018/2879793.
  • Belwal, T.; Pandey, A.; Bhatt, I. D.; Rawal, R. S.; Luo, Z. Trends of Polyphenolics and Anthocyanins Accumulation Along Ripening Stages of Wild Edible Fruits of Indian Himalayan Region. Sci. Rep. 2019, 9(1), 95894. DOI: 10.1038/s41598-019-42270-2.
  • Liu, W.; Feng, Y.; Yu, S.; Fan, Z.; Li, X.; Li, J.; Yin, H. The Flavonoid Biosynthesis Network in Plants. Int. J. Mol. Sci. 2021, 22(23), 12824. DOI: 10.3390/ijms222312824.
  • Marchiosi, R.; dos Santos, W. D.; Constantin, R. P.; de Lima, R. B.; Soares, A. R.; Finger-Teixeira, A.; Mota, T. R.; de Oliveira, D. M.; Foletto-Felipe, M. D. P.; Abrahão, J., et al. Biosynthesis and Metabolic Actions of Simple Phenolic Acids in Plants. Phytochem. Rev. 2020, 19(4), 865–906.
  • Mahesh, V.; Million-Rousseau, R.; Ullmann, P.; Chabrillange, N.; Bustamante, J.; Mondolot, L.; Morant, M.; Noirot, M.; Hamon, S.; de Kochko, A., et al. Functional Characterization of Two P-Coumaroyl Ester 3′-Hydroxylase Genes from Coffee Tree: Evidence of a Candidate for Chlorogenic Acid Biosynthesis. Plant Mol. Biol. 2007, 64(1–2), 145–159.
  • Chen, X.; Cai, W.; Xia, J.; Yu, H.; Wang, Q.; Pang, F.; Zhao, M. Metabolomic and Transcriptomic Analyses Reveal That Blue Light Promotes Chlorogenic Acid Synthesis in Strawberry. J. Agric. Food. Chem. 2020, 68(44), 12485–12492. DOI: 10.1021/acs.jafc.0c05020.
  • Aseel, D. G.; Rashad, Y. M.; Hammad, S. M. Arbuscular Mycorrhizal Fungi Trigger Transcriptional Expression of Flavonoid and Chlorogenic Acid Biosynthetic Pathways Genes in Tomato Against Tomato Mosaic Virus. Sci. Rep. 2019, 9(1), 9692. DOI: 10.1038/s41598-019-46281-x.
  • Rawat, S.; Jugran, A.; Giri, L.; Bhatt, I. D.; Rawal, R. S. Assessment of Antioxidant Properties in Fruits of Myrica esculenta: A Popular Wild Edible Species in Indian Himalayan Region. Evid.-Based Compl. Alternat. Med. 2011, 2011, 512787. DOI: 10.1093/ecam/neq055.