1,335
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Evaluation of enzymatic and non-enzymatic antioxidant potential of sprouted indigenous legumes from Pakistan

, , , ORCID Icon, , , , , , , , & ORCID Icon show all
Pages 1230-1243 | Received 30 Nov 2022, Accepted 21 Apr 2023, Published online: 10 May 2023

References

  • Sakandar, H.; Chen, Y.; Peng, C.; Chen, X.; Imran, M.; Zhang, H. Impact of Fermentation on Antinutritional Factors and Protein Degradation of Legume Seeds: A Review. Food Rev. Int. 2021, 1–23. DOI: 10.1080/87559129.2021.1931300.
  • Vashishth, R.; Semwal, A. D.; Naika, M.; Sharma, G. K.; Kumar, R. Influence of Cooking Methods on Antinutritional Factors, Oligosaccharides and Protein Quality of Underutilized Legume Macrotyloma Uniflorum. Int. Food Res. J. 2021, 143, 110299. DOI: 10.1016/j.foodres.2021.110299.
  • Taha, K.; Davuluri, R.; Yoo, P.; Spencer, J. Personalizing the Prediction of Future Susceptibility to a Specific Disease. PLoS One. 2021, 16(1), e0243127. DOI: 10.1371/journal.pone.0243127.
  • León-López, L.; Escobar-Zúñiga, Y.; Salazar-Salas, N. Y.; Mora Rochín, S.; Cuevas-Rodríguez, E. O.; Reyes-Moreno, C.; Milán-Carrillo, J. Improving Polyphenolic Compounds: Antioxidant Activity in Chickpea Sprouts Through Elicitation with Hydrogen Peroxide. Foods. 2020, 9(12), 1791. DOI: 10.3390/foods9121791.
  • Ahmed, A.; Hameed, A.; Saeed, S. Biochemical Profile and Bioactive Potential of Wild Folk Medicinal Plants of Zygophyllaceae from Balochistan, Pakistan. bioRxiv 6212. 2020. DOI: 10.1101/2020.03.30.01.
  • Pradhan, B.; Nayak, R.; Patra, S.; Jit, B. P.; Ragusa, A.; Jena, M. Bioactive Metabolites from Marine Algae as Potent Pharmacophores Against Oxidative Stress-Associated Human Diseases: A Comprehensive Review. Mol. 2021, 26(1), 37. DOI: 10.3390/molecules26010037.
  • Mahbub, R.; Francis, N.; Blanchard, C.; Santhakumar, A. The Antiinflammatory and Antioxidant Properties of Chickpea Hull Phenolic Extracts. Food Biosci. 2021, 40, 100850. DOI: 10.1016/j.fbio.2020.100850.
  • Diniyah, N.; Alam, M. B.; Lee, S. H. Antioxidant Potential of Non-Oil Seed Legumes of Indonesian’s Ethnobotanical Extracts. Arab J. Chem. 2020, 13(5), 5208–5217. DOI: 10.1016/j.arabjc.2020.02.019.
  • Matemu, A.; Nakamura, S.; Katayama, S. Health Benefits of Antioxidative Peptides Derived from Legume Proteins with a High Amino Acid Score. Antioxidants. 2021, 10, 316. DOI: 10.3390/antiox10020316.
  • Xu, J. G.; Tian, C. R.; Hu, Q. P.; Luo, J. Y.; Wang, X. D.; Tian, X. D. Dynamic Changes in Phenolic Compounds and Antioxidant Activity in Oats (Avena Nuda L.) During Steeping and Germination. J. Agric. Food. Chem. 2009, 57(21), 10392–10398. DOI: 10.1021/jf902778j.
  • Lin, P. Y.; Lai, H. M. Bioactive Compounds in Legumes and Their Germinated Products. J. Agric. Food. Chem. 2006, 54(11), 3807–3814. DOI: 10.1021/jf060002o.
  • AOAC. Association of Official Analytical Chemists Official Methods of Analysis of the Association of Official Analytical Chemists. 18th Edition; AOAC International: Washington DC, 2010.
  • Reddy, K.; Subhani, S.; Khan, P.; Kumar, K. Effect of Light and Benzyladenine on Dark Treated Growing Rice (Oryza sativa) Leaves II. Changes in Peroxidase Activity. Plant. Cell. Physiol. 1985, 26(6), 987–994. DOI: 10.1093/oxfordjournals.pcp.a077018.
  • Beers, R. F.; Sizer, I. W. A Spectrophotometric Method for Measuring the Breakdown of Hydrogen Peroxide by Catalase. J. Biol. Chem. 1952, 195(1), 133–140. DOI: 10.1016/s0021-9258(19)50881-x.
  • Chen, G. X.; Asada, K. Ascorbate Peroxidase in Tea Leaves: Occurrence of Two Isozymes and the Differences in Their Enzymatic and Molecular Properties. Plant. Cell. Physiol. 1989, 30, 987–998. DOI: 10.1093/oxfordjournals.pcp.a077844.
  • Dixit, V.; Pandey, V.; Shyam, R. Differential Antioxidative Responses to Cadmium in Roots and Leaves of Pea (Pisum sativum L. Cv. Azad). J. Exp. Bot. 2001, 52, 1101–1109. DOI: 10.1093/jexbot/52.358.1101.
  • Hameed, A.; Iqbal, N.; Malik, S. A. Effect of D-Mannose on Antioxidant Defense and Oxidative Processes in Etiolated Wheat Coleoptiles. Acta Physiol. Plant. 2014, 36(1), 161–167. DOI: 10.1007/s11738-013-1396-5.
  • Giannopolitis, C. N.; Ries, S. K. Superoxide Dismutases: I. Occurrence in Higher Plants. Plant. Physiol. 1977, 59, 309–314. DOI: 10.1104/pp.59.2.309.
  • Roe, J. H.; Kuether, C. A. The Determination of Ascorbic Acid in Whole Blood and Urine Through 2, 4 - Dinitrophenyl Hydrazine Derivative of Dehydroascorbic Acid. J. Biol. Chem. 1943, 147(2), 399–407. DOI: 10.1016/S0021-9258(18)72395-8.
  • Lin, J. Y.; Tang, C. Y. Determination of Total Phenolic and Flavonoid Contents in Selected Fruits and Vegetables, as Well as Their Stimulatory Effects on Mouse Splenocyte Proliferation. Food Chem. 2006, 101, 140–147. DOI: 10.1016/j.foodchem.01.014.
  • Hameed, A.; Iqbal, N.; Malik, S. A.; Syed, H.; Ahsanul-Haq, M. Age and Organ Specific Accumulation of Ascorbate in Wheat (Triticum aestivum L.) Seedlings Grown Under Etiolation Alone and in Combination with Oxidative Stress. Cader. Pesquisa. Sér. Biol. 2005, 17, 51–63.
  • Ainsworth, E. A.; Gillespie, K. M. Estimation of Total Phenolic Content and Other Oxidation Substrates in Plant Tissues Using Folin–Ciocalteu Reagent. Nat. Protoc. 2007, 2(4), 875–877. DOI: 10.1038/nprot.2007.102.
  • Elsayed, E. O.; Omer, R. E.; El-Naim, A. M. Some Quality Aspects and Proximate Composition of Some Legumes in Sudan. Adv. Environ. Biol. 2014, 770–774.
  • Settaluri, V. S.; Kandala, C. V. K.; Puppala, N.; Sundaram, J. Peanuts and Their Nutritional Aspects—A Review. 2012. 2012, 03(12), 1644–1650. DOI: 10.1080/10408398.2017.1339015.
  • Szostak, B.; Głowacka, A.; Klebaniuk, R.; Kiełtyka-Dadasiewicz, A. Mineral Composition of Traditional Non-GMO Soybean Cultivars in relation to Nitrogen Fertilization. Sci. World J. 2020, 2020, 1–15. DOI: 10.1155/2020/9374564.
  • Sandberg, A. S. Bioavailability of minerals in legumes. Br. J. Nutr. 2002, 88(S3), 281–285. DOI: 10.1079/BJN/2002718.
  • Kartoori, S.; Sumalatha, G. M.; Shuba, A. C.; Komala, N. T.; Biradar Patil, N. K. Role of enzymatic antioxidants defense system in seeds. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 584–594.
  • Singh, U. P.; Sarma, B. K.; Singh, D. P. Effect of plant growth promoting rhizobacteria and culture filtrate of Sclerotium rolfsii on phenolic and salicylic acid contents in chickpea (Cicer arietinum). Curr. Microbiol. 2003, 46(2), 0131–0140. DOI: 10.1007/s00284-002-3834-2.
  • Abbas, M.; Mahmood, I.; Bashir, A.; Mahmood, T.; Mahmood, M. A.; Hassan, S. Economics of chickpea production and empirical investigation of its yield determinants in low intensity zone oF Punjab. Pakistan J. Agric. Res. 2017, 55, 409–416.
  • Ighodaro, O. M.; Akinloye, O. A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J. Med. 2018, 54(4), 287–293. DOI: 10.1016/j.ajme.2017.09.001.
  • Mirhamidova, P.; Karimbayeva, M.; Toychiyeva, D. Determination of activity of catalase enzyme during the growth period of grain and legal plants. Nor. J. Dev. Int. Sci. 2021, 69, 13–15. DOI: 10.24412/3453-9875-2021-69-1-13-15.
  • Gangwar, S.; Singh, V. P.; Tripathi, D. K.; Chauhan, D. K.; Prasad, S. M.; Maurya, J. N. “Plant responses to metal stress: the emerging role of plant growth hormones in toxicity alleviation,” in Emerging Technologies and Management of Crop Stress Tolerance; Eds., Ahmad, P., Rasool S. Elsevier: Amsterdam, 2014 pp. 215–248.
  • Yan, J. J.; Zhang, L.; Wang, R. Q.; Xie, B.; Li, X.; Chen, R. L.; Guo, L. -X.; Xie, B. -G. The sequence characteristics and expression models reveal superoxide dismutase involved in cold response and fruiting body development in Volvariella volvacea. Int. J. Mol. Sci. 2016, 17(1), 34. DOI: 10.3390/ijms17010034.
  • Morohashi, Y. Peroxidase activity develops in the micropylar endosperm of tomato seeds prior to radicle protrusion. J. Exp. Bot. 2002, 53(374), 1643–1650. DOI: 10.1093/jxb/erf012.
  • Singh, K. L.; Chaudhuri, A.; Kar, R. K. Role of peroxidase activity and Ca2+ in axis growth during seed germination. Planta. 2015, 2015(4), 997–1007. DOI: 10.1007/s00425-015-2338-9.
  • Kibinza, S.; Bazin, J.; Bailly, C.; Farrant, J. M.; Corbineau, F.; El-MaaroufBouteau, H. Catalase is a key enzyme in seed recovery from ageing during priming. Plant Sci. 2011, 181(3), 309–315. DOI: 10.1016/j.plantsci.2011.06.003.
  • Fidrianny, I.; Puspitasari, N.; Marlia, S. W. Antioxidant activities, total flavonoid, phenolic, carotenoid of various shells extracts from four species of legumes. Asian J. Pharm. Clin. Res. 2014, 17, 42–46.
  • Domínguez, D.; Cuevas, E.; Milan, J.; Garzón, J. A.; Canizalez, A.; Gutirerrez, R.; Reyes, C. Enhancement the antioxidant activity, total phenolic and flavonoid contents by optimizing the germination conditions of desi chickpea (Cicer arietinum L.) seeds. FASEB. J. 2016, 30, 1176. DOI: 10.29161/PT.v6.i10.2018.1.
  • Chen, G.; Wang, H.; Zhang, X.; Yang, S. T. Nutraceuticals and functional foods in the management of hyperlipidemia. Crit. Rev. Food Sci. Nutr. 2014, 54(9), 1180–1201. DOI: 10.1080/10408398.2011.629354.
  • López-Amorós, M. L.; Hernández, T.; Estrella, I. Effect of germination on legume phenolic compounds and their antioxidant activity. J. Food Compos. Anal. 2006, 19(4), 277–283. DOI: 10.1016/j.jfca.2004.06.012.
  • Khattak, A. B. A.; Zeb, N.; Bibi, S. A.; Khalil, M. S.; Khattak, M. S. Influence of germination techniques on phytic acid and polyphenols content of chickpea (Cicer arietinum L.) sprouts. Food Chem. 2007, 104(3), 1074–1079. DOI: 10.1016/J.FOODCHEM.2007.01.022.
  • Fernández-Orozco, R.; Piskula, M. K.; Zielinski, H.; Kozlowska, H.; Frias, J.; Vidal-Valverde, C. Germination as a process to improve the antioxidant capacity of Lupinus angustifolius L. var. Zapaton. Eur. Food Res. Technol. 2006, 223(4), 495–502. DOI: 10.1007/s00217-005-0229-1.
  • Khang, D. T.; Dung, T. N.; Elzaawely, A. A.; Xuan, T. D. Phenolic profiles and antioxidant activity of germinated legumes. Foods. 2016, 5(2), 27. DOI: 10.3390/foods5020027.
  • Gujral, H. S.; Sharma, P.; Bajaj, R.; Solah, V. Effects of incorporating germinated brown rice on the antioxidant properties of wheat flour chapatti. Food Sci. Technol. Int. 2012, 18(1), 47–54. DOI: 10.1177/1082013211414173.
  • Elzaawely, A. A.; Tawata, S. Antioxidant activity of phenolic rich fraction obtained from Convolvulus arvensis L. leaves grown in Egypt. Asian J. Crop Sci. 2012, 4(1), 32–40. DOI: 10.3923/ajcs.2012.32.40.
  • Guo, X.; Li, T.; Tang, K.; Liu, R. H. Effect of germination on phytochemical profiles and antioxidant activity of mung bean sprouts (Vigna radiata). J. Agric. Food. Chem. 2012, 60(44), 11050–11055. DOI: 10.1021/jf304443u.
  • Mugisha, J.; Asekova, S.; Kulkarni, K. P.; Park, C. W.; Lee, J. D. Evaluation of crude protein, crude oil, total flavonoid, total polyphenol content and DPPH activity in the sprouts from a high oleic acid soybean cultivar. Korean J. Agric. Sci. 2016, 43(5), 723–733. DOI: 10.7744/kjoas.20160075.
  • Akram, N. A.; Shafiq, F.; Ashraf, M. Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci. 2017, 8, 613. DOI: 10.3389/fpls.2017.00613.
  • Chen, Z.; Cao, X. L.; Niu, J. P. Effects of exogenous ascorbic acid on seed germination and seedling salt-tolerance of alfalfa. PLoS One. 2021, 16(4), 250–256. DOI: 10.1371/journal.pone.0250926.
  • Masood, T.; Shah, H. U.; Zeb, A. Effect of sprouting time on proximate composition and ascorbic acid level of mung bean (Vigna radiate L.) and chickpea (Cicer arietinum L.) seeds. J. Anim. Plant Sci. 2014, 24(3), 850–859.
  • Wang, H.; Qiu, C.; Abbasi, A. M.; Chen, G.; You, L.; Li, T.; Liu, R. H.; Wang, Y.; Guo, X.; Liu, R. H. Effect of germination on vitamin C, phenolic compounds and antioxidant activity in flaxseed (Linum usitatissimum L.). Int. J. Food Sci. 2015, 50(12), 2545–2553. DOI: 10.1111/ijfs.12922.