2,302
Views
7
CrossRef citations to date
0
Altmetric
Review

Probiotic viability as affected by encapsulation materials: recent updates and perspectives

, , , , , , , , , , & show all
Pages 1324-1350 | Received 01 Feb 2023, Accepted 09 May 2023, Published online: 24 May 2023

References

  • Abbas, M. S.; Saeed, F.; Afzaal, M.; Jianfeng, L.; Hussain, M.; Ikram, A.; Jabeen, A. Recent Trends in Encapsulation of Probiotics in Dairy and Beverage: A Review. J. Food Process. Preserv. 2022, 46, e16689. DOI: 10.1111/jfpp.16689.
  • Pech-Canul, A. D. L. C.; Ortega, D.; García-Triana, A.; González-Silva, N.; Solis-Oviedo, R. L. A Brief Review of Edible Coating Materials for the Microencapsulation of Probiotics. Coatings. 2020, 10(3), 197. DOI: 10.3390/coatings10030197.
  • Riaz, Q. U. A.; Masud, T. Recent Trends and Applications of Encapsulating Materials for Probiotic Stability. Crit. Rev. Food Sci. Nutr. 2013, 53(3), 231–244. DOI: 10.1080/10408398.2010.524953.
  • Tripathi, M. K.; Giri, S. K. Probiotic Functional Foods: Survival of Probiotics During Processing and Storage. J. Funct. Foods. 2014, 9, 225–241. DOI: 10.1016/j.jff.2014.04.030.
  • Corcoran, B. M.; Stanton, C.; Fitzgerald, G. F.; Ross, R. Survival of Probiotic Lactobacilli in Acidic Environments is Enhanced in the Presence of Metabolizable Sugars. Appl. Environ. Microbiol. 2005, 71(6), 3060–3067. DOI: 10.1128/AEM.71.6.3060-3067.2005.
  • Sanders, M. E.; Benson, A.; Lebeer, S.; Merenstein, D. J.; Klaenhammer, T. R. Shared Mechanisms Among Probiotic Taxa: Implications for General Probiotic Claims. Curr. Opin. Biotechnol. 2018, 49, 207–216. DOI: 10.1016/j.copbio.2017.09.007.
  • Lebeer, S.; Bron, P. A.; Marco, M. L.; Van Pijkeren, J. P.; Motherway, M. O. C.; Hill, C.; Pot, B.; Roos, S.; Klaenhammer, T. Identification of Probiotic Effector Molecules: Present State and Future Perspectives. Curr. Opin. Biotechnol. 2018, 49, 217–223. DOI: 10.1016/j.copbio.2017.10.007.
  • Anadón, A.; Ares, I.; Martínez-Larrañaga, M. R.; Martínez, M. A. Probiotics: Safety and Toxicity Considerations. In Nutraceuticals; Academic Press: 2021; pp. 1081–1105. DOI:10.1016/B978-0-12-821038-3.00065-3.
  • Sanders, M. E.; Akkermans, L. M.; Haller, D.; Hammerman, C.; Heimbach, J. T.; Hörmannsperger, G.; Huys, G. Safety Assessment of Probiotics for Human Use. Gut Microbes. 2010, 1(3), 164–185. DOI: 10.4161/gmic.1.3.12127.
  • Pop, O. L.; Dulf, F. V.; Cuibus, L.; Castro-Giráldez, M.; Fito, P. J.; Vodnar, D. C.; Coman, C.; Socaciu, C., & Suharoschi, R. Characterization of a Sea Buckthorn Extract and Its Effect on Free and Encapsulated Lactobacillus Casei. Int. J. Mol. Sci. 2017, 18(12), 2513. DOI: 10.3390/ijms18122513.
  • Ding, W. K.; Shah, N. P. An Improved Method of Microencapsulation of Probiotic Bacteria for Their Stability in Acidic and Bile Conditions During Storage. J. Food Sci. 2009, 74(2), M53–61. DOI: 10.1111/j.1750-3841.2008.01030.x.
  • Liao, N.; Pang, B.; Jin, H.; Xu, X.; Yan, L.; Li, H.; Shao, D., & Shi, J. Potential of Lactic Acid Bacteria Derived Polysaccharides for the Delivery and Controlled Release of Oral Probiotics. J. Controlled Release. 2020, 323, 110–124. DOI: 10.1016/j.jconrel.2020.04.022.
  • Ragavan, M. L.; Das, N. Optimization of Exopolysaccharide Production by Probiotic Yeast Lipomyces starkeyi VIT-MN03 Using Response Surface Methodology and Its Applications. Ann. Microbiol. 2019, 69(5), 515–530. DOI: 10.1007/s13213-019-1440-9.
  • Lee, N. K.; Paik, H. D. Prophylactic Effects of Probiotics on Respiratory Viruses Including COVID-19: A Review. Food Sci. Biotechnol. 2021, 30(6), 773–781. DOI: 10.1007/s10068-021-00913-z.
  • Dimitrellou, D.; Kandylis, P.; Petrović, T.; Dimitrijević-Branković, S.; Lević, S.; Nedović, V.; Kourkoutas, Y. Survival of Spray Dried Microencapsulated Lactobacillus Casei ATCC 393 in Simulated Gastrointestinal Conditions and Fermented Milk. LWT Food Sci. Technol. 2016, 71, 169–174. DOI: 10.1016/j.lwt.2016.03.007.
  • Arena, M. P.; Caggianiello, G.; Russo, P.; Albenzio, M.; Massa, S.; Fiocco, D.; Capozzi, V., & Spano, G. Functional Starters for Functional Yogurt. Foods. 2015, 4(4), 15–33. DOI: 10.3390/foods4010015.
  • Li, X. Y.; Chen, X. G.; Cha, D. S.; Park, H. J.; Liu, C. S. Microencapsulation of a Probiotic Bacteria with Alginate–Gelatin and Its Properties. J. Microencapsulation. 2009, 26(4), 315–324. DOI: 10.1080/02652040802328685.
  • Kim, S. J.; Cho, S. Y.; Kim, S. H.; Song, O. J.; Shin, I. S.; Cha, D. S.; Park, H. J. Effect of Microencapsulation on Viability and Other Characteristics in Lactobacillus acidophilus ATCC 43121. LWT Food Sci. Technol. 2008, 41(3), 493–500. DOI: 10.1016/j.lwt.2007.03.025.
  • Shori, A. B. Microencapsulation Improved Probiotics Survival During Gastric Transit. HAYATI Journal Of Biosciences. 2017, 24(1), 1–5. DOI: 10.1016/j.hjb.2016.12.008.
  • Yang, W.; Wang, L.; Ban, Z.; Yan, J.; Lu, H.; Zhang, X.; Wu, Q.; Aghdam, M. S.; Luo, Z.; Li, L. Efficient Microencapsulation of Syringa Essential Oil; the Valuable Potential on Quality Maintenance and Storage Behavior of Peach. Food Hydrocoll. 2019, 95, 177–185. DOI: 10.1016/j.foodhyd.2019.04.033.
  • Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of Spray-Drying in Microencapsulation of Food Ingredients: An Overview. Food Res. Int. 2007, 40(9), 1107–1121. DOI: 10.1016/j.foodres.2007.07.004.
  • Călinoiu, L. F.; Eugenia Ştefănescu, B.; Delia Pop, I.; Muntean, L.; Cristian Vodnar, D. Chitosan Coating Applications in Probiotic Microencapsulation. Coatings. 2019, 9(3), 194. DOI: 10.3390/coatings9030194.
  • Monnard, P. A.; Oberholzer, T.; Luisi, P. Entrapment of Nucleic Acids in Liposomes. Biochim. Biophys. Acta Biomembr. 1997, 1329(1), 39–50. DOI: 10.1016/S0005-2736(97)00066-7.
  • Pavli, F.; Tassou, C.; Nychas, G. J. E.; Chorianopoulos, N. Probiotic Incorporation in Edible Films and Coatings: Bioactive Solution for Functional Foods. Int. J. Mol. Sci. 2018, 19(1), 150. DOI: 10.3390/ijms19010150.
  • Ayoub, A.; Sood, M.; Singh, J.; Bandral, J. D.; Gupta, N.; Bhat, A. Microencapsulation and Its Applications in Food Industry. J. Pharmacogn. Phytochem. 2019, 8(3), 32–37.
  • Quirós-Sauceda, A. E.; Ayala-Zavala, J. F.; Olivas, G. I.; González-Aguilar, G. A. Edible Coatings as Encapsulating Matrices for Bioactive Compounds: A Review. J. Food Sci. Technol. 2014, 51(9), 1674–1685. DOI: 10.1007/s13197-013-1246-x.
  • Janjarasskul, T.; Krochta, J. M. Edible Packaging Materials. Ann. Rev. Food Sci. Technol. 2010, 1(1), 415–448. DOI: 10.1146/annurev.food.080708.100836.
  • Fazilah, N. F.; Hamidon, N. H.; Ariff, A. B.; Khayat, M. E.; Wasoh, H.; Halim, M. Microencapsulation of Lactococcus lactis Gh1 with Gum Arabic and Synsepalum Dulcificum via Spray Drying for Potential Inclusion in Functional Yogurt. Molecules. 2019, 24(7), 1422. DOI: 10.3390/molecules24071422.
  • Acordi Menezes, L. A.; Matias de Almeida, C. A.; Mattarugo, N. M. D. S.; Ferri, E. A. V.; Bittencourt, P. R. S.; Colla, E.; Drunkler, D. A. Soy Extract and Maltodextrin as Microencapsulating Agents for Lactobacillus acidophilus: A Model Approach. J. Microencapsulation. 2018, 35(7–8), 705–719. DOI: 10.1080/02652048.2019.1579264.
  • Silva, M. P.; Tulini, F. L.; Matos-Jr, F. E.; Oliveira, M. G.; Thomazini, M.; Fávaro-Trindade, C. S. Application of Spray Chilling and Electrostatic Interaction to Produce Lipid Microparticles Loaded with Probiotics as an Alternative to Improve Resistance Under Stress Conditions. Food Hydrocoll. 2018, 83, 109–117. DOI: 10.1016/j.foodhyd.2018.05.001.
  • Arslan-Tontul, S.; Erbas, M. Single and Double Layered Microencapsulation of Probiotics by Spray Drying and Spray Chilling. LWT Food Sci. Technol. 2017, 81, 160–169. DOI: 10.1016/j.lwt.2017.03.060.
  • Dolly, P.; Anishaparvin, A.; Joseph, G. S.; Anandharamakrishnan, C. Microencapsulation of Lactobacillus Plantarum (Mtcc 5422) by Spray-Freeze-Drying Method and Evaluation of Survival in Simulated Gastrointestinal Conditions. J. Microencapsulation. 2011, 28(6), 568–574. DOI: 10.3109/02652048.2011.599435.
  • Semyonov, D.; Ramon, O.; Kaplun, Z.; Levin-Brener, L.; Gurevich, N.; Shimoni, E. Microencapsulation of Lactobacillus Paracasei by Spray Freeze Drying. Food Res. Int. 2010, 43(1), 193–202. DOI: 10.1016/j.foodres.2009.09.028.
  • Boonanuntanasarn, S.; Ditthab, K.; Jangprai, A.; Nakharuthai, C. Effects of Microencapsulated Saccharomyces cerevisiae on Growth, Hematological Indices, Blood Chemical, and Immune Parameters and Intestinal Morphology in Striped Catfish, Pangasianodon Hypophthalmus. Probiotics Antimicrob. Proteins. 2019, 11(2), 427–437. DOI: 10.1007/s12602-018-9404-0.
  • Rajam, R.; Kumar, S. B.; Prabhasankar, P.; Anandharamakrishnan, C. Microencapsulation of Lactobacillus Plantarum MTCC 5422 in Fructooligosaccharide and Whey Protein Wall Systems and Its Impact on Noodle Quality. J. Food Sci. Technol. 2015, 52(7), 4029–4041. DOI: 10.1007/s13197-014-1506-4.
  • Coghetto, C. C.; Brinques, G. B.; Siqueira, N. M.; Pletsch, J.; Soares, R. M. D.; Ayub, M. A. Z. Electrospraying Microencapsulation of Lactobacillus Plantarum Enhances Cell Viability Under Refrigeration Storage and Simulated Gastric and Intestinal Fluids. J. Funct. Foods. 2016, 24, 316–326. DOI: 10.1016/j.jff.2016.03.036.
  • Gomez-Mascaraque, L. G.; Morfin, R. C.; Pérez-Masiá, R.; Sanchez, G.; Lopez-Rubio, A. Optimization of Electrospraying Conditions for the Microencapsulation of Probiotics and Evaluation of Their Resistance During Storage and in-Vitro Digestion. LWT Food Sci. Technol. 2016, 69, 438–446. DOI: 10.1016/j.lwt.2016.01.071.
  • Priya, A. J.; Vijayalakshmi, S. P.; Raichur, A. M. Enhanced Survival of Probiotic Lactobacillus acidophilus by Encapsulation with Nanostructured Polyelectrolyte Layers Through Layer-By-Layer Approach. J. Agric. Food Chem. 2011, 59(21), 11838–11845. DOI: 10.1021/jf203378s.
  • McHugh, D. J. Production and Utilization of Products from Commercial Seaweeds; FAO: Rome, Italy, 1987.
  • Pitigraisorn, P.; Srichaisupakit, K.; Wongpadungkiat, N.; Wongsasulak, S. Encapsulation of Lactobacillus acidophilus in Moist-Heat-Resistant Multilayered Microcapsules. J. Food Eng. 2017, 192, 11–18. DOI: 10.1016/j.jfoodeng.2016.07.022.
  • Penhasi, A. Microencapsulation of Probiotic Bacteria Using Thermo-Sensitive Sol-Gel Polymers for Powdered Infant Formula. J. Microencapsulation. 2015, 32(4), 372–380. DOI: 10.3109/02652048.2015.1028497.
  • Deshpande, H.; Kharat, V.; Katke, S.; Jadhav, V. B. Studies on Process Standardization and Sensory Evaluation of Probiotic Chocolate. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 1527–1534.
  • Lee, S.; Kirkland, R.; Grunewald, Z. I.; Sun, Q.; Wicker, L.; de La Serre, C. B. Beneficial Effects of Non-Encapsulated or Encapsulated Probiotic Supplementation on Microbiota Composition, Intestinal Barrier Functions, Inflammatory Profiles, and Glucose Tolerance in High Fat Fed Rats. Nutrients. 2019, 11(9), 1975. DOI: 10.3390/nu11091975.
  • De Prisco, A.; Maresca, D.; Ongeng, D.; Mauriello, G. Microencapsulation by Vibrating Technology of the Probiotic Strain Lactobacillus Reuteri DSM 17938 to Enhance Its Survival in Foods and in Gastrointestinal Environment. LWT Food Sci. Technol. 2015, 61(2), 452–462. DOI: 10.1016/j.lwt.2014.12.011.
  • Pop, O. L.; Brandau, T.; Schwinn, J.; Vodnar, D. C.; Socaciu, C. The Influence of Different Polymers on Viability of Bifidobacterium Lactis 300b During Encapsulation, Freeze-Drying and Storage. J. Food Sci. Technol. 2015, 52(7), 4146–4155. DOI: 10.1007/s13197-014-1441-4.
  • Setijawati, D.; Nursyam, H.; Salis, H. Carrageenan: The Difference Between PNG and KCL Gel Precipitation Method as Lactobacillus acidophilus Encapsulation Material. IOP Conference Series: Earth And Environmental Science. April 2018, 137(1), 012073. IOP Publishing. DOI: 10.1088/1755-1315/137/1/012073.
  • Silva, T. M. D.; Barin, J. S.; Lopes, E. J.; Cichoski, A. J.; Flores, E. M. D. M.; Silva, C. D. B. D.; Menezes, C. R. D. Development, Characterization and Viability Study of Probiotic Microcapsules Produced by Complex Coacervation Followed by Freeze-Drying. Ciência Rural. 2019, 7, 49.
  • Bosnea, L. A.; Moschakis, T.; Nigam, P. S.; Biliaderis, C. G. Growth Adaptation of Probiotics in Biopolymer-Based Coacervate Structures to Enhance Cell Viability. LWT. 2017, 77, 282–289. DOI: 10.1016/j.lwt.2016.11.056.
  • Martins, E.; Poncelet, D.; Rodrigues, R. C.; Renard, D. Oil Encapsulation Techniques Using Alginate as Encapsulating Agent: Applications and Drawbacks. J. Microencapsulation. 2017, 34(8), 754–771. DOI: 10.1080/02652048.2017.1403495.
  • Motalebi Moghanjougi, Z.; Rezazadeh Bari, M.; Alizadeh Khaledabad, M.; Amiri, S.; Almasi, H. Microencapsulation of Lactobacillus acidophilus LA‐5 and Bifidobacterium Animalis BB‐12 in Pectin and Sodium Alginate: A Comparative Study on Viability, Stability, and Structure. Food Science & Nutrition. 2021, 9(9), 5103–5111. DOI: 10.1002/fsn3.2470.
  • Holkem, A. T.; Raddatz, G. C.; Barin, J. S.; Flores, É. M. M.; Muller, E. I.; Codevilla, C. F.; Jacob-Lopes, E.; Ferreira Grosso, C. R.; de Menezes, C. R. Production of Microcapsules Containing Bifidobacterium BB-12 by Emulsification/Internal Gelation. LWT Food Sci. Technol. 2017, 76, 216–221. DOI: 10.1016/j.lwt.2016.07.013.
  • Özer, B.; Uzun, Y. S.; Kirmaci, H. A. Effect of Microencapsulation on Viability of Lactobacillus acidophilus LA‐5 and Bifidobacterium Bifidum BB‐12 During Kasar Cheese Ripening. Int. J. Dairy Technol. 2008, 61(3), 237–244. DOI: 10.1111/j.1471-0307.2008.00408.x.
  • McMaster, L. D.; Kokott, S. A. Micro-Encapsulation of Bifidobacterium Lactis for Incorporation into Soft Foods. World J. Microbiol. Biotechnol. 2005, 21(5), 723–728. DOI: 10.1007/s11274-004-4798-0.
  • Chávarri, M.; Marañón, I.; Ares, R.; Ibáñez, F. C.; Marzo, F.; Del Carmen Villarán, M. Microencapsulation of a Probiotic and Prebiotic in Alginate-Chitosan Capsules Improves Survival in Simulated Gastro-Intestinal Conditions. Int. J. Food Microbiol. 2010, 142(1–2), 185–189. DOI: 10.1016/j.ijfoodmicro.2010.06.022.
  • Yeung, T. W.; Üçok, E. F.; Tiani, K. A.; McClements, D. J.; Sela, D. A. Microencapsulation in Alginate and Chitosan Microgels to Enhance Viability of Bifidobacterium longum for Oral Delivery. Front. Microbiol. 2016, 7, 494. DOI: 10.3389/fmicb.2016.00494.
  • O’riordan, K.; Andrews, D.; Buckle, K.; Conway, P. Evaluation of Microencapsulation of a Bifidobacterium Strain with Starch as an Approach to Prolonging Viability During Storage. J. Appl. Microbiol. 2001, 91(6), 1059–1066. DOI: 10.1046/j.1365-2672.2001.01472.x.
  • Sarao, L. K.; Arora, M. Probiotics, Prebiotics, and Microencapsulation: A Review. Crit. Rev. Food Sci. Nutr. 2017, 57(2), 344–371. DOI: 10.1080/10408398.2014.887055.
  • Sahariah, P.; Másson, M. Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure–Activity Relationship. Biomacromolecules. 2017, 18(11), 3846–3868. DOI: 10.1021/acs.biomac.7b01058.
  • Zhao, L.; Zhu, B.; Jia, Y.; Hou, W.; Su, C. Preparation of Biocompatible Carboxymethyl Chitosan Nanoparticles for Delivery of Antibiotic Drug. Biomed Res. Int. 2013, 2013, 1–7. DOI: 10.1155/2013/236469.
  • Ribeiro, M. C. E.; Chaves, K. S.; Gebara, C.; Infante, F. N.; Grosso, C. R.; Gigante, M. L. Effect of Microencapsulation of Lactobacillus acidophilus LA-5 on Physicochemical, sensory and Microbiological Characteristics of Stirred Probiotic Yoghurt. Food Res. Int. 2014, 66, 424–431. DOI: 10.1016/j.foodres.2014.10.019.
  • Nag, A.; Han, K. S.; Singh, H. Microencapsulation of Probiotic Bacteria Using Ph-Induced Gelation of Sodium Caseinate and Gellan Gum. Int. Dairy J. 2011, 21(4), 247–253. DOI: 10.1007/s11694-018-9835-z.
  • Mokhtari, S.; Jafari, S. M.; Khomeiri, M.; Maghsoudlou, Y.; Ghorbani, M. The Cell Wall Compound of Saccharomyces cerevisiae as a Novel Wall Material for Encapsulation of Probiotics. Food Res. Int. 2017, 96, 19–26. DOI: 10.1016/j.foodres.2017.03.014.
  • Gbassi, G. K.; Vandamme, T.; Ennahar, S.; Marchioni, E. Microencapsulation of Lactobacillus Plantarum Spp in an Alginate Matrix Coated with Whey Proteins. Int. J. Food Microbiol. 2009, 129(1), 103–105. DOI: 10.1016/j.ijfoodmicro.2008.11.012.
  • Doherty, S. B.; Gee, V. L.; Ross, R. P.; Stanton, C.; Fitzgerald, G. F.; Brodkorb, A. Development and Characterisation of Whey Protein Micro-Beads as Potential Matrices for Probiotic Protection. Food Hydrocoll. 2011, 25(6), 1604–1617. DOI: 10.1016/j.foodhyd.2010.12.012.
  • Krasaekoopt, W.; Bhandari, B.; Deeth, H. Evaluation of Encapsulation Techniques of Probiotics for Yoghurt. Int. Dairy J. 2003, 13(1), 3–13. DOI: 10.1016/S0958-6946(02)00155-3.
  • Fareez, I. M.; Lim, S. M.; Lim, F. T.; Mishra, R. K.; Ramasamy, K. Microencapsulation of Lactobacillus Sp. Using Chitosan‐alginate‐xanthan Gum‐β‐cyclodextrin and Characterization of Its Cholesterol Reducing Potential and Resistance Against pH, Temperature and Storage. J. Food Process Eng. 2017, 40(3), e12458. DOI: 10.1111/jfpe.12458.
  • Zia, K. M.; Tabasum, S.; Khan, M. F.; Akram, N.; Akhter, N.; Noreen, A.; Zuber, M. Recent Trends on Gellan Gum Blends with Natural and Synthetic Polymers: A Review. Int. J. Biol. Macromol. 2018, 109, 1068–1087. DOI: 10.1016/j.ijbiomac.2017.11.099.
  • Fang, Z.; Bhandari, B. Spray Drying, Freeze Drying and Related Processes for Food Ingredient and Nutraceutical Encapsulation. In Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals; Woodhead Publishing: 2012; pp. 73–109. DOI:10.1533/9780857095909.2.73.
  • Oxley, J. D. Spray Cooling and Spray Chilling for Food Ingredient and Nutraceuticalencapsulation. In Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals; Woodhead Publishing: 2012; pp. 110–130. DOI:10.1533/9780857095909.2.110.
  • Ali, M. E.; Lamprecht, A. Spray Freeze Drying as an Alternative Technique for Lyophilization of Polymeric and Lipid-Based Nanoparticles. Int. J. Pharmaceutics. 2017, 516(1–2), 170–177. DOI: 10.1016/j.ijpharm.2016.11.023.
  • Mortazavian, A.; Razavi, S. H.; Ehsani, M. R.; Sohrabvandi, S. Principles and Methods of Microencapsulation of Probiotic Microorganisms. Iran. J. Biotechnol. 2007, 5(1), 1–18.
  • Whelehan, M.; Marison, I. W. Microencapsulation Using Vibrating Technology. J. Microencapsulation. 2011, 28(8), 669–688. DOI: 10.3109/02652048.2011.586068.
  • Rayleigh, L. On the Capillary Phenomena of Jets. Proc. R. Soc. London. 1879, 29(196–199), 71–97.
  • Olivares, A.; Silva, P.; Altamirano, C. Microencapsulation of Probiotics By efficient Vibration Technology. J. Microencapsulation. 2017, 34(7), 667–674. DOI: 10.1080/02652048.2017.1390005.
  • Shi, L. E.; Li, Z. H.; Li, D. T.; Xu, M.; Chen, H. Y.; Zhang, Z. L.; Tang, Z. X. Encapsulation of Probiotic Lactobacillus Bulgaricus in Alginate–Milk Microspheres and Evaluation of the Survival in Simulated Gastrointestinal Conditions. J. Food Eng. 2013, 117(1), 99–104. DOI: 10.1016/j.jfoodeng.2013.02.012.
  • Garti, N.; Aserin, A. Micelles and Microemulsions as Food Ingredient and Nutraceutical Delivery Systems. In Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals; Woodhead Publishing: 2012; pp. 211–251. DOI:10.1533/9780857095909.3.211.
  • Singh, H.; Thompson, A.; Liu, W.; Corredig, M. Liposomes as Food Ingredients and Nutraceutical Delivery Systems. In Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals; Woodhead Publishing: 2012; pp. 287–318. DOI:10.1533/9780857095909.3.287.
  • Jaworek, A. Electrohydrodynamic Microencapsulation Technology. In Encapsulations; Academic Press: 2016; pp. 1–45. DOI:10.1016/B978-0-12-804307-3.00001-6.
  • Yan, J.; Luo, Z.; Ban, Z.; Lu, H.; Li, D.; Yang, D.; Aghdam, M. S.; Li, L. The Effect of the Layer- By-Layer (LBL) Edible Coating on Strawberry Quality and Metabolites During Storage. Postharvest. Biol. Technol. 2019, 147, 29–38. DOI: 10.1016/j.postharvbio.2018.09.002.
  • Ramos, P. E.; Cerqueira, M. A.; Teixeira, J. A.; Vicente, A. A. Physiological Protection of Probiotic Microcapsules by Coatings. Crit. Rev. Food Sci. Nutr. 2018, 58(11), 1864–1877. DOI: 10.1080/10408398.2017.1289148.
  • Jeyakumari, A.; Zynudheen, A. A.; Parvathy, U. Microencapsulation of Bioactive Food Ingredients and Controlled Release-A Review. 2016.
  • Poshadri, A.; Aparna, K. Microencapsulation Technology: A Review. Journal Of Research ANGRAU. 2010, 38(1), 86–102.
  • Tzia, C.; Tasios, L.; Spiliotaki, T.; Chranioti, C.; Giannou, V. 16 Edible Coatings and Films to Preserve Quality of Fresh Fruits and Vegetables. Food Preservation. 2016, 531.
  • Lacroix, M. Mechanical and Permeability Properties of Edible Films and Coatings for Food and Pharmaceutical Applications. In Edible Films and Coatings for Food Applications; Springer: New York, NY, 2009; pp. 347–366. DOI: 10.1007/978-0-387-92824-1_13.
  • Desai, K. G. H.; Jin Park, H. Recent Developments in Microencapsulation of Food Ingredients. Drying Technol. 2005, 23(7), 1361–1394. DOI: 10.1081/DRT-200063478.
  • de Almeida Paula, D.; Martins, E. M. F.; de Almeida Costa, N.; de Oliveira, P. M.; de Oliveira, E. B.; Ramos, A. M. Use of Gelatin and Gum Arabic for Microencapsulation of Probiotic Cells from Lactobacillus Plantarum by a Dual Process Combining Double Emulsification Followed by Complex Coacervation. Int. J. Biol. Macromol. 2019, 133, 722–731. DOI: 10.1016/j.ijbiomac.2019.04.110.
  • Xiao, J. X.; Huang, G. Q.; Wang, S. Q.; Sun, Y. T. Microencapsulation of Capsanthin by Soybean Protein Isolate‐chitosan Coacervation and Microcapsule Stability Evaluation. J. Appl. Polym. Sci. 2014, 131(1). DOI: 10.1002/app.39671.
  • Weinbreck, F.; De Vries, R.; Schrooyen, P.; De Kruif, C. G. Complex Coacervation of Whey Proteins and Gum Arabic. Biomacromolecules. 2003, 4(2), 293–303. DOI: 10.1021/bm025667n.
  • Nualkaekul, S.; Cook, M. T.; Khutoryanskiy, V. V.; Charalampopoulos, D. Influence of Encapsulation and Coating Materials on the Survival of Lactobacillus Plantarum and Bifidobacterium longum in Fruit Juices. Food Res. Int. 2013, 53(1), 304–311. DOI: 10.1016/j.foodres.2013.04.019.
  • Tavassoli-Kafrani, E.; Shekarchizadeh, H.; Masoudpour-Behabadi, M. Development of Edible Films and Coatings from Alginates and Carrageenans. Carbohydratepolymers. 2016, 137, 360–374. DOI: 10.1016/j.carbpol.2015.10.074.
  • Wandrey, C.; Bartkowiak, A.; Harding, S. E. Materials for Encapsulation. In Encapsulation Technologies for Active Food Ingredients and Food Processing; Springer: New York, NY, 2010; pp. 31–100. DOI: 10.1007/978-1-4419-1008-0_3.
  • Dafe, A.; Etemadi, H.; Zarredar, H.; Mahdavinia, G. R. Development of Novel Carboxymethyl Cellulose/k-Carrageenan Blends as an Enteric Delivery Vehicle for Probiotic Bacteria. Int. J. Biol. Macromol. 2017, 97, 299–307. DOI: 10.1016/j.ijbiomac.2017.01.016.
  • Yucel Falco, C.; Amadei, F.; Dhayal, S. K.; Cárdenas, M.; Tanaka, M.; Risbo, J. Hybrid Coating of Alginate Microbeads Based on Protein‐biopolymer Multilayers for Encapsulation of Probiotics. Biotechnol. Prog. 2019, 35(3), e2806. DOI: 10.1002/btpr.2806.
  • Anselmo, A. C.; McHugh, K. J.; Webster, J.; Langer, R.; Jaklenec, A. Layer‐by‐layer Encapsulation of Probiotics for Delivery to the Microbiome. Adv.Mate. 2016, 28(43), 9486–9490. DOI: 10.1002/adma.201603270.
  • Mandal, S.; Hati, S.; Puniya, A. K.; Khamrui, K.; Singh, K. Enhancement of survival of alginate‐encapsulated Lactobacillus casei NCDC 298. J. Sci. Food Agric. 2014, 94(10), 1994–2001. DOI: 10.1002/jsfa.6514.
  • BeMiller, J. N. Starches: Conversions, modifications, and uses. Carbohydrate chemistry for food scientists. 2019, 191–221.
  • Ying, D.; Sanguansri, L.; Weerakkody, R.; Bull, M.; Singh, T. K.; Augustin, M. A. Effect of encapsulant matrix on stability of microencapsulated probiotics. J. Funct. Foods. 2016, 25, 447–458. DOI: 10.1016/j.jff.2016.06.020.
  • Muzzafar, A.; Sharma, V. Microencapsulation of probiotics for incorporation in cream biscuits. J. Food Meas. Charact. 2018, 12(3), 2193–2201. DOI: 10.1007/s11694-018-9835-z.
  • Tzaneva, D.; Simitchiev, A.; Petkova, N.; Nenov, V.; Stoyanova, A.; Denev, P. Synthesis of carboxymethyl chitosan and its rheological behaviour in pharmaceutical and cosmetic emulsions. J. Appl. Pharm. Sci. 2017, 7(10), 070–078. DOI: 10.7324/JAPS.2017.71010.
  • Zou, Q.; Zhao, J.; Liu, X.; Tian, F.; Zhang, H. P.; Zhang, H.; Chen, W. Microencapsulation of Bifidobacterium bifidum F‐35 in reinforced alginate microspheres prepared by emulsification/internal gelation. International journal of food science & technology. 2011, 46(8), 1672–1678. DOI: 10.1111/j.1365-2621.2011.02685.x.
  • Baldwin, E. A.; Hagenmaier, R.; Bai, J., Eds. Edible coatings and films to improve food quality; CRC press, 2011.
  • Karim, A. A.; Bhat, R. Gelatin alternatives for the food industry: recent developments, challenges and prospects. Trends in food science & technology. 2008, 19(12), 644–656. DOI: 10.1016/j.tifs.2008.08.001.
  • Flores-Belmont, I. A.; Palou, E.; López-Malo, A.; Jiménez-Munguía, M. T. Simple and double microencapsulation of Lactobacillus acidophilus with chitosan using spray drying. Int. J. Food Stud. 2015, 4(2).
  • Aramwit, P.; Jaichawa, N.; Ratanavaraporn, J.; Srichana, T. A comparative study of type A and type B gelatin nanoparticles as the controlled release carriers for different model compounds. Mater. Express. 2015, 5(3), 241–248. DOI: 10.1166/mex.2015.1233.
  • Meng, Y.; Cloutier, S. Gelatin and other proteins for microencapsulation. In Microencapsulation in the food industry; Academic Press: 2014; pp. 227–239. DOI:10.1016/B978-0-12-821683-5.00021-2.
  • Thies, C. Microencapsulation of flavors by complex coacervation. Encapsulation and controlled release technologies in food systems. 2007, 149–170. DOI: 10.1002/9780470277881.ch7.
  • Holkem, A. T.; Favaro-Trindade, C. S. Potential of solid lipid microparticles covered by the protein-polysaccharide complex for protection of probiotics and proanthocyanidin-rich cinnamon extract. Food Res. Int. 2020, 136, 109520. DOI: 10.1016/j.foodres.2020.109520.
  • Praepanitchai, O. A.; Noomhorm, A.; Anal, A. K. Survival and behavior of encapsulated probiotics (Lactobacillus plantarum) in calcium-alginate-soy protein isolate based hydrogel beads in different processing conditions (pH and temperature) and in pasteurized mango juice. Biomed Res. Int. 2019, 2019, 1–8. DOI: 10.1155/2019/9768152.
  • Rizzo, G.; Baroni, L. Soy, soy foods and their role in vegetarian diets. Nutrients. 2018, 10(1), 43. DOI: 10.3390/nu10010043.
  • Wang, X.; Luo, K.; Liu, S.; Adhikari, B.; Chen, J. Improvement of gelation properties of soy protein isolate emulsion induced by calcium cooperated with magnesium. J. Food Eng. 2019, 244, 32–39. DOI: 10.1016/j.jfoodeng.2018.09.025.
  • Wang, X.; Zeng, M.; Qin, F.; Adhikari, B.; He, Z.; Chen, J. Enhanced CaSO4 induced gelation properties of soy protein isolate emulsion by pre-aggregation. Food Chem. 2018, 242, 459–465. DOI: 10.1016/j.foodchem.2017.09.044.
  • Augustin, M. A.; Oliver, C. M. Use of milk proteins for encapsulation of food ingredients. Microencapsulation in the food industry. 2014, 211–226. DOI: 10.1016/B978-0-12-404568-2.00019-4.
  • Mulvihill, D.; Donovan, M. Whey proteins and their thermal denaturation-a review. Irish Journal of Food Science and Technology. 1987, 11(1), 43–75.
  • Visker, M. H. P. W.; Heck, J. M.; Van Valenberg, H. J.; Van Arendonk, J. A.; Bovenhuis, H. Short communication: A new bovine milk-protein variant: α-Lactalbumin variant. DJ Dairy Sci. 2012, 95(4), 2165–2169. DOI: 10.3168/jds.2011-4794.
  • Sarode, A. R.; Sawale, P. D.; Khedkar, C. D.; Kalyankar, S. D.; Pawshe, R. D. Casein and caseinate: methods of manufacture. 2016.
  • DeJong, G. A. H.; Koppelman, S. J. Transglutaminase catalyzed reactions: impact on food applications. J. Food Sci. 2002, 67(8), 2798–2806. DOI: 10.1111/j.1365-2621.2002.tb08819.x.
  • Heidebach, T.; Först, P.; Kulozik, U. Transglutaminase-induced caseinate gelation for the microencapsulation of probiotic cells. Int. Dairy J. 2009, 19(2), 77–84. DOI: 10.1016/j.idairyj.2008.08.003.
  • Heidebach, T.; Först, P.; Kulozik, U. Influence of casein-based microencapsulation on freeze-drying and storage of probiotic cells. J. Food Eng. 2010, 98(3), 309–316. DOI: 10.1016/j.jfoodeng.2010.01.003.
  • Morr, C. V.; Ha, E. Y. W. Whey protein concentrates and isolates: processing and functional properties. Critical Reviews in Food Science & Nutrition. 1993, 33(6), 431–476. DOI: 10.1080/10408399309527643.
  • Fox, P. F. Milk: an overview. Milk proteins. 2008, 1–54. DOI: 10.1016/B978-0-12-374039-7.00001-5.
  • Rojas, S. A.; Goff, H. D.; Senaratne, V.; Dalgleish, D. G.; Flores, A. Gelation of commercial fractions of β-lactoglobulin and α-lactalbumin. Int. Dairy J. 1997, 7(1), 79–85. DOI: 10.1016/S0958-6946(96)00045-3.
  • Santos, M. B.; da Costa, N. R.; Garcia‐rojas, E. E. Interpolymeric complexes formed between whey proteins and biopolymers: Delivery systems of bioactive ingredients. Compr. Rev. Food Sci. Food Saf. 2018, 17(3), 792–805. DOI: 10.1111/1541-4337.12350.
  • Layman, D. K.; Lönnerdal, B.; Fernstrom, J. D. Applications for α-lactalbumin in human nutrition. Nutr. Rev. 2018, 76(6), 444–460. DOI: 10.1093/nutrit/nuy004.
  • Larsen, L. B.; Wedholm-Pallas, A.; Lindmark-Månsson, H.; Andrén, A. Different proteomic profiles of sweet whey and rennet casein obtained after preparation from raw versus heat-treated skimmed milk. Dairy Science & Technology. 2010, 90(6), 641–656. DOI: 10.1051/dst/2010024.
  • Pinto, S. S.; Verruck, S.; Vieira, C. R.; Prudêncio, E. S.; Amante, E. R.; Amboni, R. D. Influence of microencapsulation with sweet whey and prebiotics on the survival of Bifidobacterium-BB-12 under simulated gastrointestinal conditions and heat treatments. LWT Food Sci. Technol. 2015, 64(2), 1004–1009. DOI: 10.1016/j.lwt.2015.07.020.
  • Liu, H.; Xie, M.; Nie, S. Recent trends and applications of polysaccharides for microencapsulation of probiotics. Food Front. 2020, 1(1), 45–59. DOI: 10.1002/fft2.11.
  • Gruber, J. V. Polysaccharide-based polymers in cosmetics. Cosmetic Science and Technology Series. 1999, 325–390.
  • Matalanis, A.; Jones, O. G.; McClements, D. J. Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocoll. 2011, 25(8), 1865–1880. DOI: 10.1016/j.foodhyd.2011.04.014.
  • Gaudreau, H.; Champagne, C. P.; Remondetto, G. E.; Gomaa, A.; Subirade, M. Co-encapsulation of Lactobacillus helveticus cells and green tea extract: Influence on cell survival in simulated gastrointestinal conditions. J. Funct. Foods. 2016, 26, 451–459. DOI: 10.1016/j.jff.2016.08.002.
  • Chakraborty, S. Carrageenan for encapsulation and immobilization of flavor, fragrance, probiotics, and enzymes: A review. J. Carbohydr. Chem. 2017, 36(1), 1–19. DOI: 10.1080/07328303.2017.1347668.
  • Yuguchi, Y.; Thuy, T. T. T.; Urakawa, H.; Kajiwara, K. Structural characteristics of carrageenan gels: temperature and concentration dependence. Food Hydrocoll. 2002, 16(6), 515–522. DOI: 10.1016/S0268-005X(01)00131-X.
  • Özer, B.; Kirmaci, H. A.; Şenel, E.; Atamer, M.; Hayaloğlu, A. Improving the viability of Bifidobacterium bifidum BB-12 and Lactobacillus acidophilus LA-5 in white brined cheese by microencapsulation. Int. Dairy J. 2009, 19(1), 22–29. DOI: 10.1016/j.idairyj.2008.07.001.
  • Jansson, P. E.; Kenne, L.; Lindberg, B. Structure of the extracellular polysaccharide from Xanthomonas campestris. Carbohydr. Res. 1975, 45(1), 275–282. DOI: 10.1016/S0008-6215(00)85885-1.
  • Petri, D. F. Xanthan gum: A versatile biopolymer for biomedical and technological applications. J. Appl. Polym. Sci. 2015, 132(23). DOI: 10.1002/app.42035.
  • Kool, M. M.; Gruppen, H.; Sworn, G.; Schols, H. A. The influence of the six constituent xanthan repeating units on the order–disorder transition of xanthan. Carbohydr. Polym. 2014, 104, 94–100. DOI: 10.1016/j.carbpol.2013.12.073.
  • Wu, M.; Qu, J.; Shen, Y.; Dai, X.; Wei, W.; Shi, Z.; Li, G.; Ma, T. Gel properties of xanthan containing a single repeating unit with saturated pyruvate produced by an engineered Xanthomonas campestris CGMCC 15155. Food Hydrocoll. 2019, 87, 747–757. DOI: 10.1016/j.foodhyd.2018.09.002.
  • Valero-Cases, E.; Frutos, M. J. Effect of different types of encapsulation on the survival of Lactobacillus plantarum during storage with inulin and in vitro digestion. LWT. Food Sci. Technol. 2015, 64(2), 824–828. DOI: 10.1016/j.lwt.2015.06.049.
  • Fareez, I. M.; Lim, S. M.; Mishra, R. K.; Ramasamy, K. Chitosan coated alginate–xanthan gum bead enhanced pH and thermotolerance of Lactobacillus plantarum LAB12. Int. J. Biol. Macromol. 2015, 72, 1419–1428. DOI: 10.1016/j.ijbiomac.2014.10.054.
  • Karlton-Senaye, B. D.; Ibrahim, S. A. Impact of gums on the growth of probiotics. Agro food Ind. Hi Tech. 2013, 24(4), 10–14.
  • Nussinovitch, A. Hydrocolloids in Flavor Encapsulation. Water-Soluble Polymer Applications in Foods; Nussinovitch, A. Ed, 2003; pp. 31–113.
  • Burnside, E. Hydrocolloids and gums as encapsulating agents. In Microencapsulation in the food industry; Academic Press, 2014; pp. 241–252.
  • Cui, S. W. Food carbohydrates: chemistry, physical properties, and applications; CRC press, 2005.
  • Elieh-Ali-Komi, D.; Hamblin, M. R. Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int. J. Adv. Res. 2016, 4(3), 411.
  • Wallick, D. Cellulose polymers in microencapsulation of food additives. In Microencapsulation in the Food Industry; Academic Press: 2014; pp. 181–193. DOI:10.1016/B978-0-12-404568-2.00017-0.
  • Liu, H.; Yang, Q.; Zhang, L.; Zhuo, R.; Jiang, X. Synthesis of carboxymethyl chitin in aqueous solution and its thermo-and pH-sensitive behaviors. Carbohydr. Polym. 2016, 137, 600–607. DOI: 10.1016/j.carbpol.2015.11.025.
  • de Araújo Etchepare, M.; Raddatz, G. C.; de Moraes Flores, É. M.; Zepka, L. Q.; Jacob-Lopes, E.; Barin, J. S.; Ferreira Grosso, C. R. & de Menezes, C. R. Effect of resistant starch and chitosan on survival of Lactobacillus acidophilus microencapsulated with sodium alginate. LWT Food Sci. Technol. 2016, 65, 511–517. DOI: 10.1016/j.lwt.2015.08.039.
  • Trabelsi, I.; Bejar, W.; Ayadi, D.; Chouayekh, H.; Kammoun, R.; Bejar, S.; Salah, R. B. Encapsulation in alginate and alginate coated-chitosan improved the survival of newly probiotic in oxgall and gastric juice. Int. J. Biol. Macromol. 2013, 61, 36–42. DOI: 10.1016/j.ijbiomac.2013.06.035.
  • Nualkaekul, S.; Lenton, D.; Cook, M. T.; Khutoryanskiy, V. V.; Charalampopoulos, D. Chitosan coated alginate beads for the survival of microencapsulated Lactobacillus plantarum in pomegranate juice. Carbohydr. Polym. 2012, 90(3), 1281–1287. DOI: 10.1016/j.carbpol.2012.06.073.
  • Shah, U.; Naqash, F.; Gani, A.; Masoodi, F. A. Art and science behind modified starch edible films and coatings: a review. Compr. Rev. Food Sci. Food Saf. 2016, 15(3), 568–580. DOI: 10.1111/1541-4337.12197.
  • Gidwani, B.; Vyas, A. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. Biomed Res. Int. 2015, 2015, 1–15. DOI: 10.1155/2015/198268.
  • Pariot, N.; Edwards-Levy, F.; Andry, M. C.; Lévy, M. C. Cross-linked β-cyclodextrin microcapsules: preparation and properties. Int. J. Pharmaceutics. 2000, 211(1–2), 19–27. DOI: 10.1016/S0378-5173(00)00576-7.
  • Rao, A. V.; Shiwnarain, N.; Maharaj, I. Survival of microencapsulated Bifidobacterium pseudolongum in simulated gastric and intestinal juices. Can. Inst. Food Sci. Technol. J. 1989, 22(4), 345–349. DOI: 10.1016/S0315-5463(89)70426-0.
  • Li, X. Y.; Chen, X. G.; Sun, Z. W.; Park, H. J.; Cha, D. S. Preparation of alginate/chitosan/carboxymethyl chitosan complex microcapsules and application in Lactobacillus casei ATCC 393. Carbohydr. Polym. 2011, 83(4), 1479–1485. DOI: 10.1016/j.carbpol.2010.09.053.
  • Shit, S. C.; Shah, P. M. Edible polymers: challenges and opportunities. J. Polym. 2014, 2014, 1–13. DOI: 10.1155/2014/427259.
  • Vargas, M.; Pastor, C.; Chiralt, A.; McClements, D. J.; Gonzalez-Martinez, C. Recent advances in edible coatings for fresh and minimally processed fruits. Crit. Rev. Food Sci. Nutr. 2008, 48(6), 496–511. DOI: 10.1080/10408390701537344.
  • Jackson, L. S.; Lee, K. Microencapsulation and the food industry. Lebensm Wiss Technol. 1991, 24(4), 289–297.
  • Singh, M. N.; Hemant, K. S. Y.; Ram, M.; Shivakumar, H. G. Microencapsulation:A promising technique for controlled drug delivery. Res. Pharm. Sci. 2010, 5(2), 65. DOI: 10.1016/j.carbpol.2015.10.074.
  • Salaria, A.; Thompkinson, D. K.; Kumar, M. H.; Sabikhi, L. Prebiotics in the microencapsulating matrix enhance the viability of probiotic Lactobacillus acidophilus LA1. International Journal of Fermented Foods. 2013, 2(1), 33–45.