2,051
Views
2
CrossRef citations to date
0
Altmetric
Review

Functional, industrial and therapeutic applications of dairy waste materials

ORCID Icon, ORCID Icon, , , , , ORCID Icon, , , & show all
Pages 1470-1496 | Received 06 Feb 2023, Accepted 09 May 2023, Published online: 13 Jun 2023

References

  • Kyriakopoulou, K.; Keppler, J. K.; van der Goot, A. J.; Boom, R. M. Alternatives to Meat and Dairy. Annu. Rev. Food Sci. Technol. 2021, 12, 29–50. DOI: 10.1146/annurev-food-062520-101850.
  • Ahmad, T.; Aadil, R. M.; Ahmed, H.; Ur Rahman, U.; Soares, B. C.; Souza Simone, L. Q.; Pimentel, T. C.; Scudino, H.; Guimarães, J. T.; Esmerino, E. A., et al. Treatment and Utilization of Dairy Industrial Waste: A Review. Trends Food Sci. Technol. 2019, 88, 361–372.
  • Barukčić, I.; Lisak Jakopović, K.; Božanić, R. Valorisation of Whey and Buttermilk for Production of Functional Beverages–An Overview of Current Possibilities. Food Technol. Biotechnol. 2019, 57(4), 448–460. DOI: 10.17113/ftb.57.04.19.6460.
  • Lambert, S.; Leconte, N.; Blot, M.; Rousseau, F.; Robert, B.; Camier, B.; Gassi, J. -Y.; Cauty, C.; Lopez, C.; Gésan-Guiziou, G. The Lipid Content and Microstructure of Industrial Whole Buttermilk and Butter Serum Affect the Efficiency of Skimming. Food. Res. Int. 2016, 83, 121–130. DOI: 10.1016/j.foodres.2016.03.002.
  • Vanderghem, C.; Bodson, P.; Danthine, S.; Paquot, M.; Deroanne, C.; Blecker, C. Milk Fat Globule Membrane and Buttermilks: From Composition to Valorization. Biotechnol. Agron. Soc. Environ. 2010, 14(3), 485–500.
  • Conway, V.; Couture, P.; Gauthier, S.; Pouliot, Y.; Lamarche, B. Effect of Buttermilk Consumption on Blood Pressure in Moderately Hypercholesterolemic Men and Women. Nutrition. 2014, 30(1), 116–119. DOI: 10.1016/j.nut.2013.07.021.
  • Gebreselassie, N.; Abay, F.; Beyene, F. Biochemical and Molecular Identification and Characterization of Lactic Acid Bacteria and Yeasts Isolated from Ethiopian Naturally Fermented Buttermilk. J. Food Sci. Technol. 2016, 53(1), 184–196.
  • Gebreselassie, N.; Abrahamsen, R. K.; Beyene, F.; Abay, F.; Narvhus, J. A. Chemical Composition of Naturally Fermented Buttermilk. Int. J Dairy Technol. 2016, 69(2), 200–208. DOI: 10.1111/1471-0307.12236.
  • Skryplonek, K.; Dmytrów, I.; Mituniewicz-Ma\lek, A. The Use of Buttermilk as a Raw Material for Cheese Production. Int. J Dairy Technol. 2019, 72(4), 610–616. DOI: 10.1111/1471-0307.12614.
  • Lehn, D. N.; Esquerdo, V. M.; Júnior, M. A. D.; Dall’agnol, W.; dos Santos, A. C. F.; de Souza, C. F. V.; de Almeida Pinto, L. A. Microencapsulation of Different Oils Rich in Unsaturated Fatty Acids Using Dairy Industry Waste. J. Clean. Prod. 2018, 196, 665–673. DOI: 10.1016/j.jclepro.2018.06.127.
  • Ergene, E.; Ayşe, A. Effects of Cultural Conditions on Exopolysaccharide Production by Bacillus Sp. ZBP4. J. Agric. Sci. 2018, 24, 386–393. DOI: 10.15832/ankutbd.456666.
  • Mann, B.; Athira, S.; Sharma, R.; Kumar, R.; Sarkar, P. Bioactive Peptides from Whey Proteins. In Whey Protein from Milk to Medicine; Deeth, H., and Bansal, N., Eds.; 2019; pp. 519–547. DOI: 10.1016/B978-0-12-812124-5.00015-1.
  • Chandra, R.; Castillo-Zacarias, C.; Delgado, P.; Parra-Saldívar, R. A Biorefinery Approach for Dairy Wastewater Treatment and Product Recovery Towards Establishing a Biorefinery Complexity Index. J. Clean. Prod. 2018, 183, 1184–1196. DOI: 10.1016/j.jclepro.2018.02.124.
  • Chizhayeva, A.; Oleinikova, Y.; Saubenova, M.; Sadanov, A.; Amangeldi, A.; Aitzhanova, A.; Alybaeva, A.; Yelubaeva, M. Impact of Probiotics and Their Metabolites in Enhancement the Functional Properties of Whey-Based Beverages. AIMS Agric. Food. 2020, 5(3), 521–542. DOI: 10.3934/agrfood.2020.3.521.
  • Orlova, T. N.; Ott, E. F.; Musina, O. N. Perspective of Using Propionic Acid Bacteria to Produce Functional Foods Based on Milk Whey, in: AIP Conference Proceedings. AIP Publishing LLC. Ekaterinburg, Russia, 2021, 30006.
  • Hugues-Ayala, A. M.; Sarabia-Sainz, J. A.; González-Rios, H.; Vázquez-Moreno, L.; Montfort, G.R. -C. Airbrush Encapsulation of Lactobacillus Rhamnosus GG in Dry Microbeads of Alginate Coated with Regular Buttermilk Proteins. LWT. 2020, 117, 108639. DOI: 10.1016/j.lwt.2019.108639.
  • Faria, A.; Gonçalves, L.; Peixoto, J. M.; Peixoto, L.; Brito, A. G.; Martins, G. Resources Recovery in the Dairy Industry: Bioelectricity Production Using a Continuous Microbial Fuel Cell. J. Clean. Prod. 2017, 140, 971–976. DOI: 10.1016/j.jclepro.2016.04.027.
  • Huang, Z.; Zheng, H.; Brennan, C. S.; Mohan, M. S.; Stipkovits, L.; Li, L.; Kulasiri, D. Production of Milk Phospholipid-Enriched Dairy Ingredients. Foods. 2020, 9(3), 263. DOI: 10.3390/foods9030263.
  • Aghababaei, F.; Cano-Sarabia, M.; Trujillo, A. J.; Quevedo, J. M.; Ferragut, V. Buttermilk as Encapsulating Agent: Effect of Ultra-High-Pressure Homogenization on Chia Oil-In-Water Liquid Emulsion Formulations for Spray Drying. Foods. 2021, 10(5), 1059. DOI: 10.3390/foods9030263.
  • Almalki, M. A. Exopolysaccharide Production by a New Lactobacillus Lactis Isolated from the Fermented Milk and Its Antioxidant Properties. J. King Saud Univ.-Sci. 2020, 32(2), 1272–1277. DOI: 10.1016/j.jksus.2019.11.002.
  • Oliveira, D.; Fox, P.; O’Mahony, J. A. Byproducts from Dairy Processing. Byproducts Agricult Fisheries: Adding Value Food, Feed, Pharma, Fuels;. 2019, 57–106. DOI: 10.1002/9781119383956.ch4.
  • Kumar, R.; Chauhan, S. K.; Shinde, G.; Subramanian, V.; Nadanasabapathi, S. Whey Proteins: A Potential Ingredient for Food Industry-A Review. Asian J. Dairy Food Res. 2018, 37, 283–290.
  • Ozkan, G.; Franco, P.; De Marco, I.; Xiao, J.; Capanoglu, E. A Review of Microencapsulation Methods for Food Antioxidants: Principles, Advantages, Drawbacks and Applications. Food Chem. 2019, 272, 494–506. DOI: 10.1016/j.foodchem.2018.07.205.
  • Zhou, X.; Hua, X.; Huang, L.; Xu, Y. Bio-Utilization of Cheese Manufacturing Wastes (Cheese Whey Powder) for Bioethanol and Specific Product (Galactonic Acid) Production via a Two-Step Bioprocess. Bioresources Technol. 2019, 272, 70–76. DOI: 10.1016/j.biortech.2018.10.001.
  • Eckert, C.; Serpa, V. G.; dos Santos, A. C. F.; da Costa, S. M.; Dalpubel, V.; Lehn, D. N.; de Souza, C. F. V. Microencapsulation of Lactobacillus Plantarum ATCC 8014 Through Spray Drying and Using Dairy Whey as Wall Materials. LWT-Food Sci. Technol. 2017, 82, 176–183. DOI: 10.1016/j.lwt.2017.04.045.
  • Rosolen, M. D.; Bordini, F. W.; de Oliveira, P. D.; Conceição, F. R.; Pohndorf, R. S.; Fiorentini, Â. M.; da Silva, W. P.; Pieniz, S. Symbiotic Microencapsulation of Lactococcus lactis Subsp. Lactis R7 Using Whey and Inulin by Spray Drying. LWT. 2019, 115, 108411. DOI: 10.1016/j.lwt.2019.108411.
  • Puttarat, N.; Thangrongthong, S.; Kasemwong, K.; Kerdsup, P.; Taweechotipatr, M. Spray-Drying Microencapsulation Using Whey Protein Isolate and Nano-Crystalline Starch for Enhancing the Survivability and Stability of Lactobacillus Reuteri TF-7. Food Sci. Biotechnol. 2021, 30(2), 245–256.
  • Livney, Y. D.; Ruimy, E.; Aiqian, M. Y.; Zhu, X.; Singh, H. A Milkfat Globule Membrane-Inspired Approach for Encapsulation of Emulsion Oil Droplets. Food Hydrocoll. 2017, 65, 121–129. DOI: 10.1016/j.foodhyd.2016.11.017.
  • Lopez, C.; Cauty, C.; Guyomarc’h, F. Unraveling the Complexity of Milk Fat Globules to Tailor Bioinspired Emulsions Providing Health Benefits: The Key Role Played by the Biological Membrane. Eur. J. Lipid Sci. Technol. 2019, 121(1), 1800201. DOI: 10.1002/ejlt.201800201.
  • Augustin, M. A.; Bhail, S.; Cheng, L. J.; Shen, Z.; Øiseth, S.; Sanguansri, L. Use of Whole Buttermilk for Microencapsulation of Omega-3 Oils. J. Funct. Foods. 2015, 19, 859–867. DOI: 10.1016/j.jff.2014.02.014.
  • Tupuna, D. S.; Paese, K.; Guterres, S. S.; Jablonski, A.; Flôres, S. H.; de Oliveira Rios, A. Encapsulation Efficiency and Thermal Stability of Norbixin Microencapsulated by Spray-Drying Using Different Combinations of Wall Materials. Ind. Crops Prod. 2018, 111, 846–855. DOI: 10.1016/j.indcrop.2017.12.001.
  • Tolun, A.; Altintas, Z.; Artik, N. Microencapsulation of Grape Polyphenols Using Maltodextrin and Gum Arabic as Two Alternative Coating Materials: Development and Characterization. J. Biotechnol. 2016, 239, 23–33. DOI: 10.1016/j.jbiotec.2016.10.001.
  • Davidov-Pardo, G.; Arozarena, I.; Marín-Arroyo, M. R. Optimization of a Wall Material Formulation to Microencapsulate a Grape Seed Extracts Using a Mixture Design of Experiments. Food Bioprocess Technol. 2013, 6(4), 941–951.
  • Kandansamy, K.; Somasundaram, P. D. Microencapsulation of Colors by Spray Drying-A Review. Int. J. Food Eng. 2012, 8, 3. DOI: 10.1515/1556-3758.2647.
  • Hosseini, H.; Ghorbani, M.; Jafari, S. M.; Mahoonak, A. S. Encapsulation of EPA and DHA Concentrate from Kilka Fish Oil by Milk Proteins and Evaluation of Its Oxidative Stability. J. Food Sci. Technol. 2019, 56(1), 59–70.
  • Zhang, M.; Luo, T.; Zhao, X.; Hao, X.; Yang, Z. Interaction of Exopolysaccharide Produced by Lactobacillus Plantarum YW11 with Whey Proteins and Functionalities of the Polymer Complex. J. Food Sci. 2020, 85(12), 4141–4151. DOI: 10.1111/1750-3841.15522.
  • Kumar, R.; Sabikhi, L.; Rathod, G.; Chaudhary, N. Storage Studies of Flaxseed Oil Encapsulated by Buttermilk Solids. Food Bioprocess Technol. 2020, 13(8), 1392–1404.
  • Aslan, K. S.; Karabulut, I.; Koc, T. B. Changes in Oxidative Stability and Phytochemical Contents of Microencapsulated Wheat Germ Oil During Accelerated Storage. Food Biosci. 2021, 44, 101415. DOI: 10.1016/j.fbio.2021.101415.
  • Alvarado-Reveles, O.; Fernández-Michel, S.; Jiménez-Flores, R.; Cueto-Wong, C.; Vázquez-Moreno, L.; Montfort, G.R. -C. Survival and Goat Milk Acidifying Activity of Lactobacillus Rhamnosus GG Encapsulated with Agave Fructans in a Buttermilk Protein Matrix. Probiotics Antimicrob Proteins. 2019, 11, 1340–1347.
  • Fu, S.; Shen, Z.; Ajlouni, S.; Ng, K.; Sanguansri, L.; Augustin, M. A. Interactions of Buttermilk with Curcuminoids. Food Chem. 2014, 149, 47–53. DOI: 10.1016/j.foodchem.2013.10.049.
  • Zhang, X.; Zhao, Y.; Li, Y.; Zhu, L.; Fang, Z.; Shi, Q. Physicochemical, Mechanical and Structural Properties of Composite Edible Films Based on Whey Protein Isolate/Psyllium Seed Gum. Int. J. Biol. Macromol. 2020, 153, 892–901. DOI: 10.1016/j.ijbiomac.2020.03.018.
  • Fu, S.; Augustin, M. A.; Shen, Z.; Ng, K.; Sanguansri, L.; Ajlouni, S. Bioaccessibility of Curcuminoids in Buttermilk in Simulated Gastrointestinal Digestion Models. Food Chem. 2015, 179, 52–59. DOI: 10.1016/j.foodchem.2015.01.126.
  • Patel, K. S. Development of self-carbonated probiotic whey beverage. M. Tech PhD Thesis, Anand Agricultural University, Anand, Gujarat, 2012.
  • Mudgil, D.: Barak, S. Dairy-Based Functional Beverages, In: Milk-Based Beverages. Elsevier, 2019; pp. 67–93. DOI: 10.1016/B978-0-12-815504-2.00003-7.
  • Turkmen, N.; Akal, C.; Özer, B. Probiotic Dairy-Based Beverages: A Review. J. Funct. Foods. 2019, 53, 62–75. DOI: 10.1016/j.jff.2018.12.004.
  • Akal, C.; Turkmen, N.; Özer, B. Technology of Dairy-Based Beverages, in Milk-Based Beverages. Elsevier. 2019, 331–372. DOI: 10.1016/B978-0-12-815504-2.00010-4.
  • Joshi, J.; Gururani, P.; Vishnoi, S.; Srivastava, A. Whey Based Beverages: A Review. Octa J. Biosci. 2020, 300, 49–55.
  • Meshram, B. D. Butter-Milk Based Fruit Juice Beverages. Asian J. Dairy Food Res. 2015, 34, 297–299.
  • Deynichenko, G.; Yudina, T.; Rudochenko, O. Assessment of Quality Level of Buttermilk Milkshakes. Food Sci Food Technol. 2014, 4, 43–46. DOI: 10.15550/ASJ.2014.04.043.
  • Mudgil, D.; Barak, S.; Darji, P. Development and Characterization of Functional Cultured Buttermilk Utilizing Aloe Vera Juice. Food Biosci. 2016, 15, 105–109. DOI: 10.1016/j.fbio.2016.06.001.
  • Liutkevičius, A.; Speičienė, V.; Alenčikienė, G.; Mieželienė, A.; Narkevičius, R.; Kaminskas, A.; Abaravičius, J. A.; Vitkus, D.; Jablonskienė, V.; Sekmokienė, D. Fermented Buttermilk-Based Beverage: Impact on Young volunteers’ Health Parameters. Czech J. Food Sci. 2016, 34, 143–148. DOI: 10.17221/344/2015-CJFS.
  • de Freitas Mascarello, A.; Pinto, G. I.; de Araújo, I. S.; Caragnato, L. K.; da Silva, A. L. L.; dos Santos, L. F. Technological and Biological Properties of Buttermilk: A Minireview, In: Whey-Biological Properties and Alternative Uses. IntechOpen. 2019. DOI: 10.5772/intechopen.80921.
  • Szudera-Kończal, K.; Myszka, K.; Kubiak, P.; Majcher, M. A. Analysis of the Ability to Produce Pleasant Aromas on Sour Whey and Buttermilk By-Products by Mold Galactomyces Geotrichum: Identification of Key Odorants. Molecules. 2021, 26, 6239. DOI: 10.3390/molecules26206239.
  • SA, S. S. New Ingredient in Bakery, Technological and Nutritional Effects of Buttermilk. 2019. DOI:10.2991/isils-19.2019.55.
  • Shaikh, M. F. B.; Rathi, S. D. Utilisation of Buttermilk for the Preparation of Carbonated Fruit-Flavoured Beverages. Int. J Dairy Technol. 2009, 62, 564–570. DOI: 10.1111/j.1471-0307.2009.00527.x.
  • Patel, B. K.; Patel, S. M.; Modi, Z. S.; Pinto, S. V. Shelf Life Studies of Buttermilk Supplemented with Moringa. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 552–567.
  • Hassan, A. A.; El-Shazly, H. A.; Sakr, A. M.; Ragab, W. A. Influence of Substituting Water with Fermented Skim Milk, Acid Cheese Whey or Buttermilk on Dough Properties and Baking Quality of Pan Bread. World J. Dairy Food Sci. 2013, 8, 100–117.
  • Al-Jahani, A. H. Effect of Buttermilk on the Physicochemical, Rheological, and Sensory Qualities of Pan and Pita Bread. Int. J. Food Sci. 2017, 2017, 1–8. DOI: 10.1155/2017/2054252.
  • Ali, A. H. Current Knowledge of Buttermilk: Composition, Applications in the Food Industry, Nutritional and Beneficial Health Characteristics. Int. J Dairy Technol. 2019, 72, 169–182. DOI: 10.1111/1471-0307.12572.
  • Madenci, A. B.; Bilgiçli, N. Effect of Whey Protein Concentrate and Buttermilk Powders on Rheological Properties of Dough and Bread Quality. J. Food Qual. 2014, 37, 117–124. DOI: 10.1111/jfq.12077.
  • Rasouli Pirouzian, H.; Alakas, E.; Cayir, M.; Yakisik, E.; Toker, O. S.; Kaya, Ş.; Tanyeri, O. Buttermilk as Milk Powder and Whey Substitute in Compound Milk Chocolate: Comparative Study and Optimisation. Int. J Dairy Technol. 2021, 74, 246–257. DOI: 10.1111/1471-0307.12736.
  • Jeewanthi, R. K. C.; Lee, N. -K.; Paik, H. -D. Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry. Korean J. Food Sci. Anim. Resour. 2015, 35, 350. DOI: 10.5851/kosfa.2015.35.3.350.
  • Paul, S.; Kulkarni, S.; Rao, K. J. Effect of Indian Cottage Cheese (Paneer)-Whey on Rheological and Proofing Characteristics of Multigrain Bread Dough. J. Texture Stud. 2016, 47, 142–151. DOI: 10.1111/jtxs.12168.
  • Gaber, A. M.; Satar, A. -E.; Abdeen, I. M. I. Utilization of Ras Cheese Sweet Whey, Acidic Cheese Whey and Permeate to Improve of Baladi Bread Properties. J. Food Dairy Sci. 2017, 8, 449–453.
  • Luz, C.; Izzo, L.; Ritieni, A.; Mañes, J.; Meca, G. Antifungal and Antimycotoxigenic Activity of Hydrolyzed Goat Whey on Penicillium spp: An Application as Biopreservation Agent in Pita Bread. LWT. 2020, 118, 108717. DOI: 10.1016/j.lwt.2019.108717.
  • Stoliar, M. US Whey Ingredients in Bakery Products. Applications Monograph Bakery; US dairy export council: USA, 2009; pp. 1–8.
  • Khaire, R. A.; Gogate, P. R. Intensified Recovery of Lactose from Whey Using Thermal, Ultrasonic and Thermosonication Pretreatments. J. Food Eng. 2018, 237, 240–248. DOI: 10.1016/j.jfoodeng.2018.04.027.
  • Sampaio, F. C.; de Faria, J. T.; da Silva, M. F.; de Souza Oliveira, R. P.; Converti, A. Cheese Whey Permeate Fermentation by Kluyveromyces lactis: A Combined Approach to Wastewater Treatment and Bioethanol Production. Environ. Technol. 2020, 41, 3210–3218. DOI: 10.1080/09593330.2019.1604813.
  • Lech, M. Optimisation of Protein-Free Waste Whey Supplementation Used for the Industrial Microbiological Production of Lactic Acid. Biochem. Eng. J. 2020, 157, 107531. DOI: 10.1016/j.bej.2020.107531.
  • Kareb, O.; Aïder, M. Whey and Its Derivatives for Probiotics, Prebiotics, Synbiotics, and Functional Foods: A Critical Review. Probiotics Antimicrob. Proteins. 2019, 11, 348–369.
  • Kumar, R.; Kaur, M.; Garsa, A. K.; Shrivastava, B.; Reddy, V. P.; Tyagi, A. Natural and Cultured Buttermilk. Fermented Milk Dairy Prod. 2015, 2015, 203–225.
  • Antunes, A. E.; Silva, E. R.; Van Dender, A. G.; Marasca, E. T.; Moreno, I.; Faria, E. V.; Padula, M.; Lerayer, A. L. Probiotic Buttermilk-Like Fermented Milk Product Development in a Semiindustrial Scale: Physicochemical, Microbiological and Sensory Acceptability. Int. J Dairy Technol. 2009, 62, 556–563. DOI: 10.1111/j.1471-0307.2009.00534.x.
  • Fauquant, J.; Beaucher, E.; Sinet, C.; Robert, B.; Lopez, C. Combination of Homogenization and Cross-Flow Microfiltration to Remove Microorganisms from Industrial Buttermilks with an Efficient Permeation of Proteins and Lipids. Innov. Food Sci. Emerg. Technol. 2014, 21, 131–141. DOI: 10.1016/j.ifset.2013.10.004.
  • Wang, K. Relationship between lactic acid bacteria, their lipolytic activity on milk phospholipids in buttermilk and potential health contribution. PhD Thesis, The Ohio State University, 2019.
  • Parekh, S. L.; Balakrishnan, S.; Hati, S.; Aparnathi, K. D. Biofunctional Properties of Cultured Buttermilk Prepared by Incorporation of Fermented Paneer Whey. Int. J. Curr. Microbiol. App. Sci. 2017, 6, 933–945.
  • Ilavenil, S.; Park, H. S.; Vijayakumar, M.; Valan Arasu, M.; Kim, D. H.; Ravikumar, S.; Choi, K. C. Probiotic Potential of Lactobacillus Strains with Antifungal Activity Isolated from Animal Manure. Sci. World J. 2015, 2015. DOI: 10.1155/2015/802570.
  • Salah, R. B.; Jaouadi, B.; Bouaziz, A.; Chaari, K.; Blecker, C.; Derrouane, C.; Attia, H.; Besbes, S. Fermentation of Date Palm Juice by Curdlan Gum Production from Rhizobium Radiobacter ATCC 6466TM: Purification, Rheological and Physico-Chemical Characterization. LWT-Food Sci. Technol. 2011, 44, 1026–1034. DOI: 10.1016/j.lwt.2010.11.023.
  • Ünver, Y. Utilization of Cheese Whey for Production of Azurin by Pseudomonas aeruginosa. Sak. Univ. J. Sci. 2021, 25, 601–609.
  • Sharma, A.; Mukherjee, S.; Tadi, S. R. R.; Ramesh, A.; Sivaprakasam, S. Kinetics of Growth, Plantaricin and Lactic Acid Production in Whey Permeate Based Medium by Probiotic Lactobacillus Plantarum CRA52. LWT. 2021, 139, 110744. DOI: 10.1016/j.lwt.2020.110744.
  • Asunis, F.; De Gioannis, G.; Francini, G.; Lombardi, L.; Muntoni, A.; Polettini, A.; Pomi, R.; Rossi, A.; Spiga, D. Environmental Life Cycle Assessment of Polyhydroxyalkanoates Production from Cheese Whey. Waste Manag. 2021, 132, 31–43. DOI: 10.1016/j.wasman.2021.07.010.
  • Dinika, I.; Verma, D. K.; Balia, R.; Utama, G. L.; Patel, A. R. Potential of Cheese Whey Bioactive Proteins and Peptides in the Development of Antimicrobial Edible Film Composite: A Review of Recent Trends. Trends Food Sci. Technol. 2020, 103, 57–68. DOI: 10.1016/j.tifs.2020.06.017.
  • Pandey, A.; Srivastava, S.; Rai, P.; Duke, M. Cheese Whey to Biohydrogen and Useful Organic Acids: A Non-Pathogenic Microbial Treatment by L. Acidophilus. Sci. Rep. 2019, 9, 1–9.
  • Ricciardi, A.; Zotta, T.; Ianniello, R. G.; Boscaino, F.; Matera, A.; Parente, E. Effect of Respiratory Growth on the Metabolite Production and Stress Robustness of Lactobacillus Casei N87 Cultivated in Cheese Whey Permeate Medium. Front. Microbiol. 2019, 10, 851. DOI: 10.3389/fmicb.2019.00851.
  • Cardoso, T.; Marques, C.; Dagostin, J. L. A.; Masson, M. L. Lactobionic Acid as a Potential Food Ingredient: Recent Studies and Applications. J. Food Sci. 2019, 84, 1672–1681. DOI: 10.1111/1750-3841.14686.
  • Amaro, T. M.; Rosa, D.; Comi, G.; Iacumin, L. Prospects for the Use of Whey for Polyhydroxyalkanoate (PHA) Production. Front. Microbiol. 2019, 10, 992. DOI: 10.3389/fmicb.2019.00992.
  • Luongo, V.; Policastro, G.; Ghimire, A.; Pirozzi, F.; Fabbricino, M. Repeated-Batch Fermentation of Cheese Whey for Semi-Continuous Lactic Acid Production Using Mixed Cultures at Uncontrolled pH. Sustainability. 2019, 11, 3330. DOI: 10.3390/su11123330.
  • Chwialkowska, J.; Duber, A.; Zagrodnik, R.; Walkiewicz, F.; Lężyk, M.; Oleskowicz-Popiel, P. Caproic Acid Production from Acid Whey via Open Culture Fermentation–Evaluation of the Role of Electron Donors and Downstream Processing. Bioresources Technol. 2019, 279, 74–83. DOI: 10.1016/j.biortech.2019.01.086.
  • Tagliazucchi, D.; Martini, S.; Solieri, L. Bioprospecting for Bioactive Peptide Production by Lactic Acid Bacteria Isolated from Fermented Dairy Food. Ferment. 2019, 5, 96. DOI: 10.3390/fermentation5040096.
  • Longanesi, L.; Frascari, D.; Spagni, C.; DeWever, H.; Pinelli, D. Succinic Acid Production from Cheese Whey by Biofilms of Actinobacillus succinogenes: Packed Bed Bioreactor Tests. J. Chem. Technol. Biotechnol. 2018, 93, 246–256. DOI: 10.1002/jctb.5347.
  • Park, J. -K.; Huh, C. -K.; Gim, D. -W.; Kim, Y. -J.; Kim, S. -H.; Kwon, Y. -K.; Bae, D.; Kim, Y. -D. Quality Characteristics of Whey Makgeolli Vinegar Produced Using Acetobacter Pomorum IWV-03. Korean J. Food Sci. Technol. 2018, 50, 61–68. DOI: 10.9721/KJFST.2018.50.1.61.
  • Ren, Z. -Y.; Liu, G. -L.; Chi, Z.; Han, Y. -Z.; Hu, Z.; Chi, Z. -M. Overexpression of Both the Lactase Gene and Its Transcriptional Activator Gene Greatly Enhances Lactase Production by Kluyveromyces marxianus. Process Biochem. 2017, 61, 38–46. DOI: 10.1016/j.procbio.2017.06.001.
  • Yadav, J. S. S.; Yan, S.; Ajila, C. M.; Bezawada, J.; Tyagi, R. D.; Surampalli, R. Y. Food-Grade Single-Cell Protein Production, Characterization and Ultrafiltration Recovery of Residual Fermented Whey Proteins from Whey. Food Bioprod. Process. 2016, 99, 156–165. DOI: 10.1016/j.fbp.2016.04.012.
  • Lule, V. K.; Singh, R.; Pophaly, S. D.; Tomar, S. K. Production and Structural Characterisation of Dextran from an Indigenous Strain of Leuconostoc mesenteroides BA 08 in Whey. Int. J Dairy Technol. 2016, 69, 520–531. DOI: 10.1111/1471-0307.12271.
  • Macwan, S. R.; Dabhi, B. K.; Parmar, S. C.; Aparnathi, K. D. Whey and Its Utilization. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 134–155.
  • Nath, A.; Verasztó, B.; Basak, S.; Koris, A.; Kovács, Z.; Vatai, G. Synthesis of Lactose-Derived Nutraceuticals from Dairy Waste Whey—A Review. Food Bioprocess Technol. 2016, 9, 16–48.
  • Yadav, J. S. S.; Yan, S.; Pilli, S.; Kumar, L.; Tyagi, R. D.; Surampalli, R. Y. Cheese Whey: A Potential Resource to Transform into Bioprotein, Functional/Nutritional Proteins and Bioactive Peptides. Biotechnol. Adv. 2015, 33, 756–774. DOI: 10.1016/j.biotechadv.2015.07.002.
  • Mollea, C.; Marmo, L.; Bosco, F. Valorisation of Cheese Whey, a By-Product from the Dairy Industry, In: Food Industry. IntechOpen. 2013. DOI: 10.5772/53159.
  • Hsu, C. S. Integrated Rotating Fibrous-Bed Bioreactor-Ultrafiltration Process for Xanthan Gum Production from Whey Lactose. Dissertion, The Ohio State University and OhioLINK, 2011.
  • Toyoda, T.; Ohtaguchi, K. Effect of Temperature on D-Arabitol Production from Lactose by Kluyveromyces lactis. J. Ind. Microbiol. Biotechnol. 2011, 38, 1179–1185. DOI: 10.1007/s10295-010-0893-4.
  • Gupte, A. M.; Nair, J. S. β-Galactosidase Production and Ethanol Fermentation from Whey Using Kluyveromyces marxianus. NCIM. 2010, 3551 855–859.
  • Fonseca, G. G.; Heinzle, E.; Wittmann, C.; Gombert, A. K. The Yeast Kluyveromyces marxianus and Its Biotechnological Potential. Appl. Microbiol. Biotechnol. 2008, 79, 339–354.
  • Pham, P. L.; Dupont, I.; Roy, D.; Lapointe, G.; Cerning, J. Production of Exopolysaccharide by Lactobacillus Rhamnosus R and Analysis of Its Enzymatic Degradation During Prolonged Fermentation. Appl. Environ. Microbiol. 2000, 66, 2302–2310. DOI: 10.1128/AEM.66.6.2302-2310.2000.
  • Di Pierro, P.; Mariniello, L.; Giosafatto, V. L.; Esposito, M.; Sabbah, M.; Porta, R. Dairy Whey Protein-Based Edible Films and Coatings for Food Preservation. Food Packag Preserv. Elsevier. 2018, 439–456. DOI: 10.1016/B978-0-12-811516-9.00013-0.
  • Hammam, A. R. Technological, Applications, and Characteristics of Edible Films and Coatings: A Review. Sn. Appl. Sci. 2019, 1, 1–11.
  • Kandasamy, S.; Yoo, J.; Yun, J.; Kang, H. -B.; Seol, K. -H.; Kim, H. -W.; Ham, J. -S. Application of Whey Protein-Based Edible Films and Coatings in Food Industries: An Updated Overview. Coatings. 2021, 11, 1056.
  • Zhang, Y.; Pang, X.; Zhang, S.; Liu, L.; Ma, C.; Lu, J.; Lyu, J. Buttermilk as a Wall Material for Microencapsulation of Omega-3 Oils by Spray Drying. LWT. 2020, 127, 109320. DOI: 10.1016/j.lwt.2020.109320.
  • Fernandes, L. M.: Guimarães, J. T.; Pimentel, T. C.; Esmerino, E. A.; Freitas, M. Q.; Carvalho, C. W. P.; Cruz, A. G.; Silva, M. C. Edible Whey Protein Films and Coatings Added with Prebiotic Ingredients. In Agri-Food Industry Strategies for Healthy Diets and Sustainability. Elsevier. 2020, 177–193. DOI: 10.1016/B978-0-12-817226-1.00007-2.
  • Zikmanis, P.; Kolesovs, S.; Semjonovs, P. Production of Biodegradable Microbial Polymers from Whey. Bioresour. Bioprocess. 2020, 7, 1–15.
  • Ahmad, T.; Aadil, R. M.; Ahmed, H.; Ur Rahman, U.; Soares, B. C.; Souza, S. L.; Pimentel, T. C.; Scudino, H.; Guimarães, J. T.; Esmerino, E. A. Treatment and Utilization of Dairy Industrial Waste: A Review. Trends Food Sci. Technol. 2019, 88, 361–372.
  • Blandón, L. M.; Noseda, M. D.; Islan, G. A.; Castro, G. R.; de Melo Pereira, G. V.; Thomaz-Soccol, V.; Soccol, C. R. Optimization of Culture Conditions for Kefiran Production in Whey: The Structural and Biocidal Properties of the Resulting Polysaccharide. Bioact. Carbohydr. Diet. Fibre. 2018, 16, 14–21. DOI: 10.1016/j.bcdf.2018.02.001.
  • Li, C.; Ding, J.; Chen, D.; Shi, Z.; Wang, L. Bioconversion of Cheese Whey into a Hetero-Exopolysaccharide via a One-Step Bioprocess and Its Applications. Biochem. Eng. J. 2020, 161, 107701. DOI: 10.1016/j.bej.2020.107701.
  • Do, T. B. T.; Tran, B. K.; Tran, T. V. T.; Le, T. H.; Cnockaert, M.; Vandamme, P.; Nguyen, T. H. C.; Nguyen, C. C.; Hong, S. H.; Kim, S. Y., et al. Decoding the Capability of Lactobacillus Plantarum W1 Isolated from Soybean Whey in Producing an Exopolysaccharide. ACS Omega. 2020, 51, 33387–33394.
  • Al-Dhabi, N. A.; Esmail, G. A.; Duraipandiyan, V.; Arasu, M. V. Chemical Profiling of Streptomyces Sp. Al-Dhabi-2 Recovered from an Extreme Environment in Saudi Arabia as a Novel Drug Source for Medical and Industrial Applications. Saudi J. Biol. Sci. 2019, 26, 758–766. DOI: 10.1016/j.sjbs.2019.03.009.
  • Kwak, H. -S.; Lee, W. -J.; Lee, M. -R. Revisiting Lactose as an Enhancer of Calcium Absorption. Int. Dairy. J. 2012, 22, 147–151.
  • Dullius, A.; Goettert, M. I.; de Souza, C. F. V. Whey Protein Hydrolysates as a Source of Bioactive Peptides for Functional Foods–Biotechnological Facilitation of Industrial Scale-Up. J. Funct. Foods. 2018, 42, 58–74. DOI: 10.1016/j.jff.2017.12.063.
  • Mazorra-Manzano, M. A.; Robles-Porchas, G. R.; González-Velázquez, D. A.; Torres-Llanez, M. J.; Martínez-Porchas, M.; García-Sifuentes, C. O.; González-Córdova, A. F.; Vallejo-Córdoba, B. Cheese Whey Fermentation by Its Native Microbiota: Proteolysis and Bioactive Peptides Release with ACE-Inhibitory Activity. Fermentation. 2020, 6, 19. DOI: 10.3390/fermentation6010019.
  • Mohanty, D. P.; Mohapatra, S.; Misra, S.; Sahu, P. S. Milk Derived Bioactive Peptides and Their Impact on Human Health–A Review. Saudi J. Biol. Sci. 2016, 23, 577–583. DOI: 10.1016/j.sjbs.2015.06.005.
  • Martínez-Medina, G. A.; Carranza-Méndez, R.; Amaya-Chantaca, D. P.; Ilyna, A.; Gaviria-Acosta, E.; Hoyos-Concha, J. L.; Chávez-González, M. L.; Govea-Salas, M.; Prado-Barragán, L. A.; Aguilar-González, C. N. Bioactive Peptides from Food Industrial Wastes. In Bioactive Peptides; Onuh, J.; Selvamuthukumaran, M.; Pathak, Y. V.; Eds.; CRC Press: Boca Raton, 2021; pp. 169–203.
  • Worsztynowicz, P.: Bia\las, W.; Grajek, W. Integrated Approach for Obtaining Bioactive Peptides from Whey Proteins Hydrolysed Using a New Proteolytic Lactic Acid Bacteria. Food Chem. 2020, 312, 126035. DOI: 10.1016/j.foodchem.2019.126035.
  • Monari, S.; Ferri, M.; Russo, C.; Prandi, B.; Tedeschi, T.; Bellucci, P.; Zambrini, A. V.; Donati, E.; Tassoni, A.; Papadimitriou, K. Enzymatic Production of Bioactive Peptides from Scotta, an Exhausted By-Product of Ricotta Cheese Processing. PLoS One. 2019, 14, e0226834. DOI: 10.1371/journal.pone.0226834.
  • Mills, S.; Ross, R. P.; Hill, C.; Fitzgerald, G. F.; Stanton, C. Milk Intelligence: Mining Milk for Bioactive Substances Associated with Human Health. Int. Dairy. J. 2011, 21, 377–401. DOI: 10.1016/j.idairyj.2010.12.011.
  • van der Kraan, M. I.; Groenink, J.; Nazmi, K.; Veerman, E. C.; Bolscher, J. G.; Amerongen, A. V. N. Lactoferrampin: A Novel Antimicrobial Peptide in the N1-Domain of Bovine Lactoferrin. Peptides. 2004, 25, 177–183. DOI: 10.1016/j.peptides.2003.12.006.
  • Chen, J.; Lindmark-Månsson, H.; Gorton, L.; Åkesson, B. Antioxidant Capacity of Bovine Milk as Assayed by Spectrophotometric and Amperometric Methods. Int. Dairy. J. 2003, 13, 927–935. DOI: 10.1016/S0958-6946(03)00139-0.
  • Burns, P.; Molinari, F.; Beccaria, A.; Paez, R.; Meinardi, C.; Reinheimer, J.; Vinderola, G. Suitability of Buttermilk for Fermentation with Lactobacillus helveticus and Production of a Functional Peptide-Enriched Powder by Spray-Drying. J. Appl. Microbiol. 2010, 109, 1370–1378. DOI: 10.1111/j.1365-2672.2010.04761.x.
  • Barman, S.; Ghosh, R.; Mandal, N. C. Production Optimization of Broad Spectrum Bacteriocin of Three Strains of Lactococcus lactis Isolated from Homemade Buttermilk. Ann. Agrar. Sci. 2018, 16, 286–296. DOI: 10.1016/j.aasci.2018.05.004.
  • Olabi, A.; Jinjarak, S.; Jiménez-Flores, R.; Walker, J. H.; Daroub, H. Compositional and Sensory Differences of Products of Sweet-Cream and Whey Buttermilk Produced by Microfiltration, Diafiltration, and Supercritical CO2. J. Dairy. Sci. 2015, 98, 3590–3598. DOI: 10.3168/jds.2014-9141.
  • Jean, C.; Boulianne, M.; Britten, M.; Robitaille, G. Antimicrobial Activity of Buttermilk and Lactoferrin Peptide Extracts on Poultry Pathogens. J. Dairy Res. 2016, 83, 497–504.
  • Akalın, A. S. Dairy-Derived Antimicrobial Peptides: Action Mechanisms, Pharmaceutical Uses and Production Proposals. Trends Food Sci. Technol. 2014, 36, 79–95. DOI: 10.1016/j.tifs.2014.01.002.
  • Amiri, S.; Rezaei Mokarram, R.; Sowti Khiabani, M.; Rezazade Bari, M.; Alizadeh Khaledabad, M. Production of Lactic Acid by Lactobacillus acidophilus LA5 and Bifidobacterium Lactis BB12 in Batch Fermentation of Cheese Whey and Milk Permeate. J Food Res. 2020, 30, 33–49.
  • Wu, H.; Dalke, R.; Mai, J.; Holtzapple, M.; Urgun-Demirtas, M. Arrested Methanogenesis Digestion of High-Strength Cheese Whey and Brewery Wastewater with Carboxylic Acid Production. Bioresources Technol. 2021, 332, 125044. DOI: 10.1016/j.biortech.2021.125044.
  • Uysal, U.; Hamamcı, H. Succinic Acid Production from Cheese Whey via Fermentation by Using Alginate Immobilized Actinobacillus Succinogenes. Bioresour. Technol. Rep. 2021, 16, 100829. DOI: 10.1016/j.biteb.2021.100829.
  • Iglesias-Iglesias, R.; Portela-Grandío, A.; Treu, L.; Campanaro, S.; Kennes, C.; Veiga, M. C. Co-Digestion of Cheese Whey with Sewage Sludge for Caproic Acid Production: Role of Microbiome and Polyhydroxyalkanoates Potential Production. Bioresources Technol. 2021, 337, 125388. DOI: 10.1016/j.biortech.2021.125388.
  • Lagoa-Costa, B.; Kennes, C.; Veiga, M. C. Cheese Whey Fermentation into Volatile Fatty Acids in an Anaerobic Sequencing Batch Reactor. Bioresources Technol. 2020, 308, 123226. DOI: 10.1016/j.biortech.2020.123226.
  • Zhao, L.; Feng, R.; Mao, X. Addition of Buttermilk Powder Improved the Rheological and Storage Properties of Low-Fat Yogurt. Food Sci. Nutr. 2020, 8, 3061–3069. DOI: 10.1002/fsn3.1373.
  • Zhao, L.; Feng, R.; Mao, X. Addition of Buttermilk Improves the Flavor and Volatile Compound Profiles of Low-Fat Yogurt. LWT. 2018, 98, 9–17. DOI: 10.1016/j.lwt.2018.08.029.
  • Iranmanesh, M.; Ezzatpanah, H.; Mojgani, N.; Torshizi, M. Characterization and Kinetics of Growth of Bacteriocin Like Substance Produced by Lactic Acid Bacteria Isolated from Ewe Milk and Traditional Sour Buttermilk in Iran. J. Food Process. Technol. 2015, 6, 1–9.
  • Bourlieu, C.; Cheillan, D.; Blot, M.; Daira, P.; Trauchessec, M.; Ruet, S.; Gassi, J. -Y.; Beaucher, E.; Robert, B.; Leconte, N., et al. Polar Lipid Composition of Bioactive Dairy Co-Products Buttermilk and Butterserum: Emphasis on Sphingolipid and Ceramide Isoforms. Food Chem. 2018, 240, 67–74. DOI: 10.1016/j.foodchem.2017.07.091.
  • Lopez, C.; Madec, M. -N.; Jimenez-Flores, R. Lipid Rafts in the Bovine Milk Fat Globule Membrane Revealed by the Lateral Segregation of Phospholipids and Heterogeneous Distribution of Glycoproteins. Food Chem. 2010, 120, 22–33. DOI: 10.1016/j.foodchem.2009.09.065.
  • Verardo, V.; Gómez-Caravaca, A. M.; Arráez-Román, D.; Hettinga, K. Recent Advances in Phospholipids from Colostrum, Milk and Dairy By-Products. Int. J. Mol. Sci. 2017, 18, 173. DOI: 10.3390/ijms18010173.
  • Bourlieu, C.; Cheillan, D.; Blot, M.; Daira, P.; Trauchessec, M.; Ruet, S.; Gassi, J. -Y.; Beaucher, E.; Robert, B.; Leconte, N. Polar Lipid Composition of Bioactive Dairy Co-Products Buttermilk and Butterserum: Emphasis on Sphingolipid and Ceramide Isoforms. Food Chem. 2018, 240, 67–74. DOI: 10.1016/j.foodchem.2017.07.091.
  • Zheng, W.; Kollmeyer, J.; Symolon, H.; Momin, A.; Munter, E.; Wang, E.; Kelly, S.; Allegood, J. C.; Liu, Y.; Peng, Q. Ceramides and Other Bioactive Sphingolipid Backbones in Health and Disease: Lipidomic Analysis, Metabolism and Roles in Membrane Structure, Dynamics, Signaling and Autophagy. Biochim. Biophys. Acta BBA-Biomembr. 2006, 1758, 1864–1884. DOI: 10.1016/j.bbamem.2006.08.009.
  • Wehrmüller, K. Impact of Dietary Phospholipids on Human Health. ALP Sci. Switz. 2008, 12–15.
  • Tanaka, K.; Hosozawa, M.; Kudo, N.; Yoshikawa, N.; Hisata, K.; Shoji, H.; Shinohara, K.; Shimizu, T. The Pilot Study: Sphingomyelin-Fortified Milk Has a Positive Association with the Neurobehavioural Development of Very Low Birth Weight Infants During Infancy, Randomized Control Trial. Brain Dev. 2013, 35, 45–52. DOI: 10.1016/j.braindev.2012.03.004.
  • Huang, Z. Milk lipid complexation and interaction with food ingredients: Digestibility and absorption. Ph.D thesis, Lincoln University, 2019.
  • Lopez, C.; Blot, M.; Briard-Bion, V.; Cirié, C.; Graulet, B. Butter Serums and Buttermilks as Sources of Bioactive Lipids from the Milk Fat Globule Membrane: Differences in Their Lipid Composition and Potentialities of Cow Diet to Increase N-3 PUFA. Food. Res. Int. 2017, 100, 864–872. DOI: 10.1016/j.foodres.2017.08.016.
  • Phan, T. T. Q.; Asaduzzaman, M.; Le, T. T.; Fredrick, E.; Van der Meeren, P.; Dewettinck, K. Composition and Emulsifying Properties of a Milk Fat Globule Membrane Enriched Material. Int. Dairy. J. 2013, 29, 99–106. DOI: 10.1016/j.idairyj.2012.10.014.
  • Sodini, I.; Morin, P.; Olabi, A.; Jiménez-Flores, R. Compositional and Functional Properties of Buttermilk: A Comparison Between Sweet, Sour, and Whey Buttermilk. J. Dairy. Sci. 2006, 89, 525–536. DOI: 10.3168/jds.S0022-0302(06)72115-4.
  • Wong, P. Y. Y.; Kitts, D. D. A Comparison of the Buttermilk Solids Functional Properties to Nonfat Dried Milk, Soy Protein Isolate, Dried Egg White, and Egg Yolk Powders. J. Dairy. Sci. 2003, 86, 746–754. DOI: 10.3168/jds.S0022-0302(03)73655-8.
  • Roesch, R. R.; Rincon, A.; Corredig, M. Emulsifying Properties of Fractions Prepared from Commercial Buttermilk by Microfiltration. J. Dairy. Sci. 2004, 87, 4080–4087. DOI: 10.3168/jds.S0022-0302(04)73550-X.
  • Sánchez-Juanes, F.; Alonso, J. M.; Zancada, L.; Hueso, P. Distribution and Fatty Acid Content of Phospholipids from Bovine Milk and Bovine Milk Fat Globule Membranes. Int. Dairy. J. 2009, 19, 273–278. DOI: 10.1016/j.idairyj.2008.11.006.
  • Contarini, G.; Povolo, M. Phospholipids in Milk Fat: Composition, Biological and Technological Significance, and Analytical Strategies. Int. J. Mol. Sci. 2013, 14, 2808–2831. DOI: 10.3390/ijms14022808.
  • Das, B.; Sarkar, S.; Sarkar, A.; Bhattacharjee, S.; Bhattacharjee, C. Recovery of Whey Proteins and Lactose from Dairy Waste: A Step Towards Green Waste Management. Process Saf. Environ. Prot. 2016, 101, 27–33. DOI: 10.1016/j.psep.2015.05.006.
  • Chen, Z.; Luo, J.; Wang, Y.; Cao, W.; Qi, B.; Wan, Y. A Novel Membrane-Based Integrated Process for Fractionation and Reclamation of Dairy Wastewater. Chem. Eng. J. 2017, 313, 1061–1070. DOI: 10.1016/j.cej.2016.10.134.
  • Zandona, E.; Blažić, M.; Režek Jambrak, A. Whey Utilization: Sustainable Uses and Environmental Approach. Food Technol. Biotechnol. 2021, 59, 147–161.
  • Khatami, K.; Perez-Zabaleta, M.; Owusu-Agyeman, I.; Cetecioglu, Z. Waste to Bioplastics: How Close are We to Sustainable Polyhydroxyalkanoates Production? Waste Manag. 2021, 119, 374–388. DOI: 10.1016/j.wasman.2020.10.008.
  • Khattab, A. M.; Esmael, M. E.; Farrag, A. A.; Ibrahim, M. I. Structural Assessment of the Bioplastic (Poly-3-Hydroxybutyrate) Produced by Bacillus Flexus Azu-A2 Through Cheese Whey Valorization. Int. J. Biol. Macromol. 2021, 190, 319–332. DOI: 10.1016/j.ijbiomac.2021.08.090.
  • Raho, S.; Carofiglio, V. E.; Montemurro, M.; Miceli, V.; Centrone, D.; Stufano, P.; Schioppa, M.; Pontonio, E.; Rizzello, C. G. Production of the Polyhydroxyalkanoate PHBV from Ricotta Cheese Exhausted Whey by Haloferax mediterranei Fermentation. Foods. 2020, 9, 1459. DOI: 10.3390/foods9101459.
  • Reddy, M. V.; Mawatari, Y.; Onodera, R.; Nakamura, Y.; Yajima, Y.; Chang, Y. -C. Bacterial Conversion of Waste into Polyhydroxybutyrate (PHB): A New Approach of Bio-Circular Economy for Treating Waste and Energy Generation. Bioresour. Technol. Rep. 2019, 7, 100246. DOI: 10.1016/j.biteb.2019.100246.
  • Chalermthai, B.; Giwa, A.; Schmidt, J. E.; Taher, H. Life Cycle Assessment of Bioplastic Production from Whey Protein Obtained from Dairy Residues. Bioresour. Technol. Rep. 2021, 15, 100695. DOI: 10.1016/j.biteb.2021.100695.
  • Sato, K.; Iwai, K.; Aito-Inoue, M. Identification of Food-Derived Bioactive Peptides in Blood and Other Biological Samples. J. AOAC Int. 2008, 91, 995–1001. DOI: 10.1093/jaoac/91.4.995.
  • Kan, J.; Cheng, J.; Xu, L.; Hood, M.; Zhong, D.; Cheng, M.; Liu, Y.; Chen, L.; Du, J. The Combination of Wheat Peptides and Fucoidan Protects Against Chronic Superficial Gastritis and Alters Gut Microbiota: A Double-Blinded, Placebo-Controlled Study. Eur. J. Nutr. 2020, 59, 1655–1666.
  • Hussein, F. A.; Chay, S. Y.; Ghanisma, S. B. M.; Zarei, M.; Auwal, S. M.; Hamid, A. A.; Ibadullah, W. Z. W.; Saari, N. Toxicity Study and Blood Pressure–Lowering Efficacy of Whey Protein Concentrate Hydrolysate in Rat Models, Plus Peptide Characterization. J. Dairy. Sci. 2020, 103, 2053–2064. DOI: 10.3168/jds.2019-17462.
  • Lam, F. -C.; Bukhsh, A.; Rehman, H.; Waqas, M. K.; Shahid, N.; Khaliel, A. M.; Elhanish, A.; Karoud, M.; Telb, A.; Khan, T. M. Efficacy and Safety of Whey Protein Supplements on Vital Sign and Physical Performance Among Athletes: A Network Meta-Analysis. Front Pharmacol. 2019, 10, 317.
  • Young, K. W.; Munro, I. C.; Taylor, S. L.; Veldkamp, P.; van Dissel, J. T. The Safety of Whey Protein Concentrate Derived from the Milk of Cows Immunized Against Clostridium Difficile. Regul. Toxicol. Pharmacol. 2007, 47, 317–326. DOI: 10.1016/j.yrtph.2006.12.001.
  • Dyer, A. R.; Burdock, G. A.; Carabin, I. G.; Haas, M. C.; Boyce, J.; Alsaker, R.; Read, L. C. In vitro and in vivo Safety Studies of a Proprietary Whey Extract. Food. Chem. Toxicol. 2008, 46, 1659–1665. DOI: 10.1016/j.fct.2007.12.029.
  • Diao, X. An Update on Food Allergen Management and Global Labeling Regulations. Ph.D Thesis, University Of Minnesota, 2017. https://hdl.handle.net/11299/194287
  • Knipping, K.; Simons, P. J.; Buelens-Sleumer, L. S.; Cox, L.; den Hartog, M.; de Jong, N.; Teshima, R.; Garssen, J.; Boon, L.; Knippels, L. M. Development of β-Lactoglobulin-Specific Chimeric Human IgEκ Monoclonal Antibodies for in vitro Safety Assessment of Whey Hydrolysates. PLoS One. 2014, 9, e106025. DOI: 10.1371/journal.pone.0106025.
  • Bagwe, S.; Tharappel, L. J.; Kaur, G.; Buttar, H. S. Bovine Colostrum: An Emerging Nutraceutical. J. Complement. Integr. Med. 2015, 12, 175–185. DOI: 10.1515/jcim-2014-0039.
  • Tamano, S.; Sekine, K.; Takase, M.; Yamauchi, K.; Iigo, M.; Tsuda, H. Lack of Chronic Oral Toxicity of Chemopreventive Bovine Lactoferrin in F344/DuCrj Rats. Asian Pac. J. Cancer Prev. 2008, 9, 313–316.
  • Donato, P.; Cacciola, F.; Cichello, F.; Russo, M.; Dugo, P.; Mondello, L. Determination of Phospholipids in Milk Samples by Means of Hydrophilic Interaction Liquid Chromatography Coupled to Evaporative Light Scattering and Mass Spectrometry Detection. J. Chromatogr. 2011, A 1218, 6476–6482.
  • Davies, S. S.; Guo, L. Lipid Peroxidation Generates Biologically Active Phospholipids Including Oxidatively N-Modified Phospholipids. Chem. Phys. Lipids. 2014, 181, 1–33.
  • Augustyńska-Prejsnar, A.; Ormian, M.; Hanus, P.; Kluz, M.; Soko\lowicz, Z.; Rudy, M. Effects of Marinating Breast Muscles of Slaughter Pheasants with Acid Whey, Buttermilk, and Lemon Juice on Quality Parameters and Product Safety. J. Food Qual. 2019. DOI: 10.1155/2019/5313496.