619
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Rheological properties of the mixture of Lentinan and saliva and its inhibitory effect on Streptococcus mutans

, , , , , , , , , & show all
Pages 1678-1697 | Received 17 Mar 2023, Accepted 10 Jun 2023, Published online: 27 Jun 2023

References

  • Lavergne, M. D. D.; Young, A. K.; Engmann, J.; Christoph, H., Food Oral Processing—An Industry Perspective. Front Nutr. 2021, 8, 634410. DOI:10.3389/fnut.2021.634410.
  • Witter, D. J.; Haan, A. F. D.; Käyser, A. F.; van Rossum, G. M. A 6-Year Follow-Up Study of Oral Function in Shortened Dental Arches. Part I: Occlusal Stability. J. Oral Rehabil. 2010, 21(2), 113–125. DOI: 10.1111/j.1365-2842.1994.tb01131.x.
  • Rossetti, D.; Yakubov, G. E.; Stokes, J. R.; Williamson, A. M.; Fuller, G. G. Interaction of Human Whole saliva and Astringent Dietary compounds investigated by Interfacial Shear Rheology. Food Hydrocoll. 2008, 22(6), 1068–1078. DOI: 10.1016/j.foodhyd.2007.05.014.
  • Panda, S.; Chen, J.; Benjamin, O. Development of Model Mouth for Food Oral Processing Studies: Present Challenges and Scopes. Innovative Food Sci. Emerging Technol. 2020, 66(1), 102524. DOI: 10.1016/j.ifset.2020.102524.
  • Shi, J. J.; Zhang, J. G.; Sun, Y. H.; Xu, Q. X.; Li, L.; Prasad, C.; Wei, Z. J. The Rheological Properties of Polysaccharides Sequentially Extracted from Peony Seed Dreg. Int. J. Biol. Macromol. 2016, 91, 760–767. DOI: 10.1016/j.ijbiomac.2016.06.038.
  • Yuan, B.; Ritzoulis, C.; Chen, J. Extensional and Shear Rheology of Okra Polysaccharides in the Presence of Artificial Saliva. NPJ Sci. Food. 2018, 2, 20. DOI: 10.1038/s41538-018-0029-1.
  • He, L. I.; Qin, M. A.; Zhao, J. Study on Optimization of Extraction and Effects of Polysaccharides on Streptococcus Mutans from Paeonia Sinjiangensis K. Y. Pan. Guangdong Trace Elem. Sci. 2013, 20(4), 10–17. DOI: 10.16755/j.cnki.issn.1006-446x.2013.04.008.
  • Zheng, Z.; Zhang, Y.; Liu, Y.; Wang, J.; Cui, Z.; Pan, X.; Liu, Y.; Tang, W.; Wang, K. Metabolic Degradation of Lentinan in Liver Mediated by CYP450 Enzymes and Epoxide Hydrolase. Carbohydr. Polym. 2021, 253(9), 117–255. DOI: 10.1016/j.carbpol.2020.117255.
  • Ziaja-Sotys, M.; Radzki, W.; Nowak, J.; Topolska, J.; Jabłońska-Ryś, E.; Sławińska, A.; Skrzypczak, K.; Kuczumow, A.; Bogucka-Kocka, A. Processed Fruiting Bodies of Lentinus Edodes as a Source of Biologically Active Polysaccharides. Appl. Sci. 2020, 10(2), 470. DOI: 10.3390/app10020470.
  • Nagashima, Y.; Yoshino, S.; Yamamoto, S.; Maeda, N.; Azumi, T.; Komoike, Y.; Okuno, K.; Iwasa, T.; Tsurutani, J.; Nakagawa, K. Lentinula Edodes Mycelia Extract Plus Adjuvant Chemotherapy for Breast Cancer Patients: Results of a Randomized Study on Host Quality of Life and Immune Function Improvement. Mol. Clin. Oncol. 2017, 7(3), 359–366. DOI: 10.3892/mco.2017.1346.
  • Yu, Z. H.; Yin, L. H.; Qian, Y.; Yan, L. Effect of Lentinus Edodes Polysaccharide on Oxidative Stress, Immunity Activity and Oral Ulceration of Rats Stimulated by Phenol. Carbohydr. Polym. 2009, 75(1), 115–118. DOI: 10.1016/j.carbpol.2008.07.002.
  • Ciric, L.; Tymon, A.; Zaura, E.; Lingström, P.; Stauder, M.; Papetti, A.; Signoretto, C.; Pratten, J.; Wilson, M.; Spratt, D. In vitro Assessment of Shiitake Mushroom (Lentinula Edodes) Extract for Its Antigingivitis Activity. Biomed Res. Int. 2011, 2011(1), 1–7. Article 507908. DOI: 10.1155/2011/507908.
  • Meng, J. L.; Feng, C. P.; Chang, M. C.; Cheng, H. Y. Study on the Antibacterial Effect of Shiitake Polysaccharide. J. Shanxi Agri. Univ. (Nat. Sci. Edition). 2012, 32(3), 261–264. DOI: 10.13842/j.cnki.issn1671-8151.2012.03.004.
  • Ma, C. Y.; He, N.; Zhao, Y. Y.; Xia, D. D.; Wei, J.; Kang, W. Antimicrobial Mechanism of Hydroquinone. Appl. Biochem. Biotechnol. 2019, 189(4), 1291–1303. DOI: 10.1007/s12010-019-03067-1.
  • He, N.; Wang, P. Q.; Wang, P. Y.; Ma, C. Y.; Kang, W. Y. Antibacterial Mechanism of Chelerythrine Isolated from Root of Toddalia Asiatica (Linn) Lam. BMC Complement. Altern. Med. 2018, 18(1), 261–269. DOI: 10.1186/s12906-018-2317-3.
  • Li, P. F.; Sun, N.; Zeng, J. C.; Zeng, Y. R.; Fan, Y. G.; Feng, W. J.; Li, J. Differential Expression of MiR-672-5p and MiR-146a-5p in Osteoblasts in Rats After Steroid Intervention. Gene. 2016, 591(1), 69–73. DOI: 10.1016/j.gene.2016.06.045.
  • Hao, Z. Q.; Chen, Z. J.; Chang, M. C.; Meng, J. L.; Liu, J. Y.; Feng, C. P. Rheological Properties and Gel Characteristics of Polysaccharides from Fruit-Bodies of Sparassis Crispa. Int. J. Food Prop. 2018, 21(1), 2283–2295. DOI: 10.1080/10942912.2018.1510838.
  • Salehi, F.; Kashaninejad, M.; Behshad, V. Effect of Sugars and Salts on Rheological Properties of Balangu Seed (Lallemantia Royleana) Gum. Int. J. Biol. Macromol. 2014, 67(3), 16–21. DOI: 10.1016/j.ijbiomac.2014.03.001.
  • Xu, J. L.; Zhang, J. C.; Liu, Y.; Sun, H. J.; Wang, J. H. Rheological Properties of a Polysaccharide from Floral Mushrooms Cultivated in Huangshan Mountain. Carbohydr. Polym. 2016, 139, 43–49. DOI: 10.1016/j.carbpol.2015.12.011.
  • Ni, L. F.; Yu, J.; Wang, X. P.; Wang, J.; Cao, X. X.; Cao, S. L.; Ma, X. J. Studies on the Effects of Sodium Hydroxide on Hydrogen Bonding of Water and Ionic Liquid/H2O Systems by ATR-IR Analyses. Spectrosc. Spectral Anal. 2021, 41(10), 3106–3110. DOI: 10.3964/j.issn.1000-0593(2021)10-3106-05.
  • Chen, J. S. Food Oral Processing: Some Important Underpinning Principles of Eating and Sensory Perception. Food Struct. 2014, 1(2), 91–105. DOI: 10.1016/j.foostr.2014.03.001.
  • Zhao, C. Y.; Bu, G. H.; Chen, F. S.; Yu, Z. Preparation and Stability of Nanoemulsions from Glycated Soy Protein Isolate. J. Henan Univ. Technol: Nat. Sci. Edition. 2021, 42(4), 22–29. DOI: 10.16433/j.1673-2383.2021.04.004.
  • Ren, N. N.; Gong, Y. H.; Lu, Y. Z.; Meng, H.; Li, C. X. Surface Tension Measurements for Seven Imidazolium-Based Dialkylphosphate Ionic Liquids and Their Binary Mixtures with Water (Methanol or Ethanol) at 298.15 K and 1 Atm. J. Chem & Eng Data. 2014, 59(2), 189–196. DOI: 10.1021/je400004j.
  • Ren, D. D. Preparation and Performance Studies of Multifunctional Polyacrylamide Composite Hydrogels. Zhengzhou Univ. 2021. DOI: 10.27466/d.cnki.gzzdu.2021.005148.
  • Ccahuana-Vásquez, R. A.; Cury, J. A. S.Mutans Biofilm Model to Evaluate Antimicrobial Substances and Enamel Demineralization. Braz. Oral. Res. 2010, 24(2), 135–141. DOI: 10.1590/S1806-83242010000200002.
  • He, L. In Vitro Study of the Effect of Peony Total Polysaccharides on Bacterial Virulence Factors; Xinjiang Medical University: 2013. DOI: 10.7666/d.D600574.
  • Strahl, H.; Errington, J. Bacterial Membranes: Structure, Domains, and Function. Annu. Rev. Microbiol. 2017, 71(1), 519–538. DOI: 10.1146/annurev-micro-102215-095630.
  • Zhou, J. C.; Zhou, G. Y.; Liu, J. A.; He, Y. H.; Dong, W. T. Antifungal Mechanisms of the Ethyl Acetate Extracts from Phytolacca americana and Ageratum Conyzoides Against Colletotrichum Gloeosporioides of Dalbergia Odorifera. Plant Prot. 2017, 43(4), 46–50+60. DOI: 10.3969/j.issn.0529-1542.2017.04.008.
  • Wang, Z. C.; Yang, Q. Q.; Wang, X. Q.; Li, R. F.; Qiao, H. Z.; Ma, P. A.; Su, Q.; Zhang, H. R. Antibacterial Activity of Xanthan-Oligosaccharide Against Staphylococcus Aureus via Targeting Biofilm and Cell Membrane. Int. J. Biol. Macromol. 2020, 153(6), 539–544. DOI: 10.1016/j.ijbiomac.2020.03.044.
  • Diana, R.; Joenoes, H.; Djais, A. A. The Effect of Curcuma Xanthorrhiza Ethanol Extract on the Viability of Streptococcus Mutans and Aggregatibacter Actinomycetemcomitans (Dental Biofilm Research: In vitro Study). Asian J. Pharm. Clin. Res. 2017, 10(17), 30. DOI: 10.22159/ajpcr.2017.v10s5.23087.
  • Zhang, Z. H.; Dong, Y.; Tian, Y.; Ji, Y. R.; Yang, Q. L.; Shi, J. Antibiostatic Mechanism of Industrial Cannabis Leaves Against Staphylococcus Aureus. J. Food Biotechnol. 2021, 40(5), 95–103. DOI: 10.3969/j.issn.1673-1689.2021.05.012.
  • Ji, J. Y.; Yang, J.; Zhang, B. W.; Wang, S. R.; Zhang, G.-C.; Lin, L.-N. Sodium Pheophorbide a Controls Cherry Tomato Gray Mold (Botrytis cinerea) by Destroying Fungal Cell Structure and Enhancing Disease Resistance-Related Enzyme Activities in Fruit. Pestic. Biochem. Physiol. 2020, 166, 104581. DOI: 10.1016/j.pestbp.2020.104581.
  • Choi, B. K.; Kim, K. Y.; Yoo, Y. J.; Oh, S. H.; Choi, J. H.; Kim, K. Y. In vitro Antimicrobial Activity of a Chitooligosaccharide Mixture Against Actinobacillus Actinomycetemcomitans and Streptococcus mutans. Int. J. Antimicrob. Agents. 2001, 18(6), 553–557. DOI: 10.1016/S0924-8579(01)00434-4.
  • Han, Y.; Sun, Z.; Chen, W. Antimicrobial Susceptibility and Antibacterial Mechanism of Limonene Against Listeria Monocytogenes. Mol. 2020, 25(1), 33. DOI: 10.3390/molecules25010033.
  • Bajpai, V. K.; Sharma, A.; Baek, K. H. Antibacterial Mode of Action of Cudrania Tricuspidata Fruit Essential Oil, Affecting Membrane Permeability and Surface Characteristics of Food-Borne Pathogens. Food Control. 2013, 32(2), 582–590. DOI: 10.1016/j.foodcont.2013.01.032.
  • Zou, L.; Hu, Y.; Chen, X.; The Antimicrobial Mechanism of Black Pepper Petroleum Ether Extracts on Escherichia coli and Staphylococcus Aureus. Food Science and Technology. 2018, 43(6), 245–249. CNKI:SUN:SSPJ.0.2018-06-049.
  • Zheng, S.; Jing, G.; Wang, X.; Ouyang, Q.; Jia, L.; Tao, N. Citral Exerts Its Antifungal Activity Against Penicillium Digitatum by Affecting the Mitochondrial Morphology and Function. Food Chem. 2015, 178(jul.1), 76–81. DOI: 10.1016/j.foodchem.2015.01.077.
  • Kong, J. H. Enzymatic Preparation of Theaflavins and Its Health-Promoting Activity on Oral Microbiota. Zhejiang Gongshang Univ. 2022. DOI: 10.27462/d.cnki.ghzhc.2022.000007.
  • Park, S. N.; Lim, Y. K.; Choi, M. H.; Cho, E.; Bang, I. S.; Kim, J. M.; Ahn, S. J.; Kook, J. K. Antimicrobial Mechanism of Oleanolic and Ursolic Acids on Streptococcus Mutans UA159. Current Microbiol: An Int. J. 2017, 75(1), 11–19. DOI: 10.1007/s00284-017-1344-5.
  • Zhao, G. J. Effect of Different Concentrations of Sucrose and Xylitol on the Interaction Between S. Sanguina and S. Mutans [master’s thesis]; Zhengzhou University: China, 2015.
  • Ultee, A.; Bennik, M. H. J.; Moezelaar, R. The Phenolic Hydroxyl Group of Carvacrol is Essential for Action Against the Food-Borne Pathogen Bacillus cereus. Appl. Environ. Microbiol. 2002, 68(4), 1561–1568. DOI: 10.1128/AEM.68.4.1561-1568.2002.