1,660
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Enhanced functionality of fermented whey protein using water kefir

, , , , , , & show all
Pages 1663-1677 | Received 03 Mar 2023, Accepted 10 Jun 2023, Published online: 27 Jun 2023

References

  • Alrosan, M.; Tan, T. C.; Koh, W. Y.; Easa, A. M.; Gammoh, S.; Alu’datt, M. H. Overview of Fermentation Process: Structure-Function Relationship on Protein Quality and Non-Nutritive Compounds of Plant-Based Proteins and Carbohydrates. Crit. Rev. Food Sci. Nutr. 2022. DOI: 10.1080/10408398.2022.2049200.
  • Azi, F.; Tu, C.; Rasheed, H. A.; Dong, M. Comparative Study of the Phenolics, Antioxidant and Metagenomic Composition of Novel Soy Whey‐Based Beverages Produced Using Three Different Water Kefir Microbiota. Int. J. Food Sci. Technol. 2020, 55(4), 1689–1697. DOI: 10.1111/ijfs.14439.
  • Alrosan, M.; Tan, T. C.; Easa, A. M.; Gammoh, S.; Alu’datt, M. H.; Aleid, G. M.; Alhamad, M. N.; Maghaydah, S. Evaluation of Quality and Protein Structure of Natural Water Kefir-Fermented Quinoa Protein Concentrates. Food Chem. 2023, 404, 134614. DOI: 10.1016/j.foodchem.2022.134614.
  • Alrosan, M.; Tan, T. C.; Easa, A. M.; Gammoh, S.; Alu’datt, M. H.; Stankovic, M. Effects of Fermentation on the Quality, Structure, and Nonnutritive Contents of Lentil (Lens culinaris) Proteins. J. Food Qual. 2021, 2021, 1–7. DOI: 10.1155/2021/5556450.
  • Tu, C.; Azi, F.; Huang, J.; Xu, X.; Xing, G.; Dong, M. Quality and Metagenomic Evaluation of a Novel Functional Beverage Produced from Soy Whey Using Water Kefir Grains. LWT. 2019, 113, 108258. DOI: 10.1016/j.lwt.2019.108258.
  • Çabuk, B.; Nosworthy, M. G.; Stone, A. K.; Korber, D. R.; Tanaka, T.; House, J. D.; Nickerson, M. T. Effect of Fermentation on the Protein Digestibility and Levels of Non-Nutritive Compounds of Pea Protein Concentrate. Food Technol. Biotechnol. 2018, 56(2), 257–264. DOI: 10.17113/ftb.56.02.18.5450.
  • Alrosan, M.; Tan, T. C.; Easa, A. M.; Gammoh, S.; Alu’datt, M. H. Recent Updates on Lentil and Quinoa Protein-Based Dairy Protein Alternatives: Nutrition, Technologies, and Challenges. Food Chem. 2022, 383, 132386. DOI: 10.1016/j.foodchem.2022.132386.
  • Liu, H.; Li, Q.; Jiang, S.; Zhang, M.; Zhao, D.; Shan, K.; Li, C. Exploring the Underlying Mechanisms on NaCl-Induced Reduction in Digestibility of Myoglobin. Food Chem. 2022, 380, 132183. DOI: 10.1016/j.foodchem.2022.132183.
  • Naclerio, F.; Seijo, M. Whey Protein Supplementation and Muscle Mass: Current Perspectives. Nutr. Diet. Suppl. 2019, 11, 37–48. DOI: 10.2147/NDS.S166195.
  • Alrosan, M.; Tan, T. C.; Easa, A. M.; Gammoh, S.; Alu’datt, M. H. Molecular Forces Governing Protein-Protein Interaction: Structure-Function Relationship of Complexes Protein in the Food Industry. Crit. Rev. Food Sci. Nutr. 2022, 62(15), 4036–4052. DOI: 10.1080/10408398.2021.1871589.
  • Mukherjee, A.; Gómez-Sala, B.; O’Connor, E. M.; Kenny, J. G.; Cotter, P. D. Global Regulatory Frameworks for Fermented Foods: A Review. Front Nutr. 2022, 9, 902642. DOI: 10.3389/fnut.2022.902642.
  • Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC, 19th ed.; AOAC International: Rockville, USA, 2012.
  • Almeida, C. C.; Monteiro, M. L. G.; da Costa-Lima, B. R. C.; Alvares, T. S.; Conte-Junior, C. A. In vitro Digestibility of Commercial Whey Protein Supplements. LWT – Food. Sci. Technol. 2015, 61(1), 7–11. DOI: 10.1016/j.lwt.2014.11.038.
  • Alrosan, M.; Tan, T. C.; Easa, A. M.; Gammoh, S.; Alu’datt, M. H. Mechanism of the Structural Interaction Between Whey and Lentil Proteins in the Unique Creation of a Protein Structure. J. Food Sci. 2021, 86(12), 5282–5294. DOI: 10.1111/1750-3841.15974.
  • Johnston, S. P.; Nickerson, M. T.; Low, N. H. The Physicochemical Properties of Legume Protein Isolates and Their Ability to Stabilize Oil-In-Water Emulsions with and without Genipin. J. Food Sci. Technol. 2015, 52(7), 4135–4145. DOI: 10.1007/s13197-014-1523-3.
  • Xiao, Y.; Xing, G.; Rui, X.; Li, W.; Chen, X.; Jiang, M.; Dong, M. Enhancement of the Antioxidant Capacity of Chickpeas by Solid State Fermentation with Cordyceps Militaris SN-18. J. Funct. Foods. 2014, 10, 210–222. DOI: 10.1016/j.jff.2014.06.008.
  • Jia, J.; Ji, B.; Tian, L.; Li, M.; Lu, M.; Ding, L.; Liu, X.; Duan, X. Mechanism Study on Enhanced Foaming Properties of Individual Albumen Proteins by Lactobacillus Fermentation. Food Hydrocolloid. 2021, 111, 106218. DOI: 10.1016/j.foodhyd.2020.106218.
  • dos Santos, J. M.; Quináia, S. P.; Felsner, M. L. Fast and Direct Analysis of Cr, Cd and Pb in Brown Sugar by GF AAS. Food Chem. 2018, 260, 19–26. DOI: 10.1016/j.foodchem.2018.03.106.
  • Jiang, S.; Ding, J.; Andrade, J.; Rababah, T.; Almajwal, A.; Abulmeaty, M. M.; Feng, H. Modifying the Physicochemical Properties of Pea Protein by Ph-Shifting and Ultrasound Combined Treatments. Ultrason. Sonochem. 2017, 38, 835–842. DOI: 10.1016/j.ultsonch.2017.03.046.
  • Tang, S. Q.; Du, Q. H.; Fu, Z. Ultrasonic Treatment on Physicochemical Properties of Water-Soluble Protein from Moringa Oleifera Seed. Ultrason. Sonochem. 2021, 71, 105357. DOI: 10.1016/j.ultsonch.2020.105357.
  • Gantumur, M. A.; Sukhbaatar, N.; Shi, R.; Hu, J.; Bilawal, A.; Qayum, A.; Tian, B.; Jiang, Z.; Hou, J. Structural, Functional, and Physicochemical Characterization of Fermented Whey Protein Concentrates Recovered from Various Fermented-Distilled Whey. Food Hydrocolloid. 2023, 135, 108130. DOI: 10.1016/j.foodhyd.2022.108130.
  • Ziarno, M.; Hasalliu, R.; Cwalina, A. Effect of the Addition of Milk Protein Preparations on Selected Quality Parameters and Nutritional Characteristics of Kefir. Appl. Sci. 2021, 11(3), 966. DOI: 10.3390/app11030966.
  • Pranoto, Y.; Anggrahini, S.; Efendi, Z. Effect of Natural and Lactobacillus Plantarum Fermentation on in-Vitro Protein and Starch Digestibilities of Sorghum Flour. Food Biosci. 2013, 2, 46–52. DOI: 10.1016/j.fbio.2013.04.001.
  • Chandra-Hioe, M. V.; Wong, C. H.; Arcot, J. The Potential Use of Fermented Chickpea and Faba Bean Flour as Food Ingredients. Plant Foods Hum. Nutr. 2016, 71(1), 90–95. DOI: 10.1007/s11130-016-0532-y.
  • Yang, H.; Qu, Y.; Li, J.; Liu, X.; Wu, R.; Wu, J. Improvement of the Protein Quality and Degradation of Allergens in Soybean Meal by Combination Fermentation and Enzymatic Hydrolysis. LWT. 2020, 128, 109442. DOI: 10.1016/j.lwt.2020.109442.
  • Ayala-Niño, A.; Rodríguez-Serrano, G. M.; Jiménez-Alvarado, R.; Bautista-Avila, M.; Sánchez-Franco, J. A.; González-Olivares, L. G.; Cepeda-Saez, A. Bioactivity of Peptides Released During Lactic Fermentation of Amaranth Proteins with Potential Cardiovascular Protective Effect: An in vitro Study. J. Med. Food. 2019, 22(10), 976–981. DOI: 10.1089/jmf.2019.0039.
  • Carbonaro, M.; Maselli, P.; Nucara, A. Relationship Between Digestibility and Secondary Structure of Raw and Thermally Treated Legume Proteins: A Fourier Transform Infrared (FT-IR) Spectroscopic Study. Amino Acids. 2012, 43(2), 911–921. DOI: 10.1007/s00726-011-1151-4.
  • Wang, Z.; Li, Y.; Jiang, L.; Qi, B.; Zhou, L. Relationship Between Secondary Structure and Surface Hydrophobicity of Soybean Protein Isolate Subjected to Heat Treatment. J. Chem. 2014, 2014, 475389. DOI: 10.1155/2014/475389.
  • Yasar, S.; Tosun, R.; Sonmez, Z. Fungal Fermentation Inducing Improved Nutritional Qualities Associated with Altered Secondary Protein Structure of Soybean Meal Determined by FTIR Spectroscopy. Meas. 2020, 161, 107895. DOI: 10.1016/j.measurement.2020.107895.
  • Salazar-Villanea, S.; Hendriks, W.; Bruininx, E.; Gruppen, H.; Van Der Poel, A. Protein Structural Changes During Processing of Vegetable Feed Ingredients Used in Swine Diets: Implications for Nutritional Value. Nutr. Res. Rev. 2016, 29(1), 126–141. DOI: 10.1017/S0954422416000056.
  • Oomah, B. D.; Caspar, F.; Malcolmson, L. J.; Bellido, A.-S. Phenolics and Antioxidant Activity of Lentil and Pea Hulls. Food. Res. Int. 2011, 44(1), 436–441. DOI: 10.1016/j.foodres.2010.09.027.
  • Yilmaz-Ersan, L.; Ozcan, T.; Akpinar-Bayizit, A.; Sahin, S. The Antioxidative Capacity of Kefir Produced from Goat Milk. Int. J. Chem. Eng. Appl. 2016, 7(1), 22–26. DOI: 10.7763/IJCEA.2016.V7.535.
  • Đorđević, T. M.; Šiler-Marinković, S. S.; Dimitrijević-Branković, S. I. Effect of Fermentation on Antioxidant Properties of Some Cereals and Pseudo Cereals. Food Chem. 2010, 119(3), 957–963. DOI: 10.1016/j.foodchem.2009.07.049.
  • Liyana-Pathirana, C. M.; Shahidi, F. Importance of Insoluble-Bound Phenolics to Antioxidant Properties of Wheat. J. Agric. Food. Chem. 2006, 54(4), 1256–1264. DOI: 10.1021/jf052556h.
  • Gunenc, A.; Yeung, M. H.; Lavergne, C.; Bertinato, J.; Hosseinian, F. Enhancements of Antioxidant Activity and Mineral Solubility of Germinated Wrinkled Lentils During Fermentation in Kefir. J. Funct. Foods. 2017, 32, 72–79. DOI: 10.1016/j.jff.2017.02.016.
  • Aiello, F.; Restuccia, D.; Spizzirri, U. G.; Carullo, G.; Leporini, M.; Loizzo, M. R. Improving Kefir Bioactive Properties by Functional Enrichment with Plant and Agro-Food Waste Extracts. Fermentation. 2020, 6(3), 83. DOI: 10.3390/fermentation6030083.
  • Lai, L.-R.; Hsieh, S.-C.; Huang, H.-Y.; Chou, C.-C. Effect of Lactic Fermentation on the Total Phenolic, Saponin and Phytic Acid Contents as Well as Anti-Colon Cancer Cell Proliferation Activity of Soymilk. J. Biosci. Bioeng. 2013, 115(5), 552–556. DOI: 10.1016/j.jbiosc.2012.11.022.
  • Adebo, O. A.; Gabriela Medina-Meza, I. Impact of Fermentation on the Phenolic Compounds and Antioxidant Activity of Whole Cereal Grains: A Mini Review. Molecules. 2020, 25(4), 927. DOI: 10.3390/molecules25040927.
  • Muñoz, R.; de las Rivas, B.; de Felipe, F. L.; Reverón, I.; Santamaría, L.; Esteban-Torres, M.; Curiel, J. A.; Rodríguez, H.; Landete, J. M. Biotransformation of Phenolics by Lactobacillus Plantarum in Fermented Foods. In Fermented Foods in Health and Disease Prevention; 1st, Frías, J., Martínez-Villaluenga, C., and Peñas, E.; Eds; Academic Press; Cambridge, USA, 2017; p. 63–83. DOI: 10.1016/B978-0-12-802309-9.00004-2.
  • Ajila, C.; Brar, S.; Verma, M.; Tyagi, R.; Valéro, J. Solid-State Fermentation of Apple Pomace Using Phanerocheate Chrysosporium–Liberation and Extraction of Phenolic Antioxidants. Food Chem. 2011, 126(3), 1071–1080. DOI: 10.1016/j.foodchem.2010.11.129.
  • Wang, R.; Xu, P.; Chen, Z.; Zhou, X.; Wang, T. Complexation of Rice Proteins and Whey Protein Isolates by Structural Interactions to Prepare Soluble Protein Composites. LWT. 2019, 101, 207–213. DOI: 10.1016/j.lwt.2018.11.006.
  • Zhang, J.; Liu, D.; Liu, Y.; Yu, Y.; Hemar, Y.; Regenstein, J. M.; Zhou, P. Effects of Particle Size and Aging of Milk Protein Concentrate on the Biophysical Properties of an Intermediate-Moisture Model Food System. Food Biosci. 2020, 37, 100698. DOI: 10.1016/j.fbio.2020.100698.
  • Hiller, B.; Lorenzen, P. C. Functional Properties of Milk Proteins as Affected by Maillard Reaction Induced Oligomerisation. Food. Res. Int. 2010, 43(4), 1155–1166. DOI: 10.1016/j.foodres.2010.02.006.
  • Li, T.; Wang, C.; Li, T.; Ma, L.; Sun, D.; Hou, J.; Jiang, Z. Surface Hydrophobicity and Functional Properties of Citric Acid Cross-Linked Whey Protein Isolate: The Impact of pH and Concentration of Citric Acid. Molecules. 2018, 23(9), 2383. DOI: 10.3390/molecules23092383.
  • Shilpashree, B. G.; Arora, S.; Chawla, P.; Tomar, S. K. Effect of Succinylation on Physicochemical and Functional Properties of Milk Protein Concentrate. Food. Res. Int. 2015, 72, 223–230. DOI: 10.1016/j.foodres.2015.04.008.
  • Gulitz, A.; Stadie, J.; Wenning, M.; Ehrmann, M. A.; Vogel, R. F. The Microbial Diversity of Water Kefir. Int. J. Food Microbiol. 2011, 151(3), 284–288. DOI: 10.1016/j.ijfoodmicro.2011.09.016.