1,030
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bioactive compounds, minerals and antioxidants of edible flowers of peach and apple

, , , , , , & show all
Pages 1855-1866 | Received 26 Apr 2023, Accepted 08 Jul 2023, Published online: 17 Jul 2023

References

  • Moreira, M. C. N. D.; de Almeida, G. L.; Carvalho, E. E. N.; Garcia, J. A. D.; Nachtigall, A. M.; Vilas Boas, B. M. Quality Parameters, Antioxidant Activity, and Sensory Acceptability of Mixed Jams of Rose Petals and Apple. J. Food Process Preserv. 2019, 43(12), e14272. DOI: 10.1111/jfpp.14272.
  • Göttingerová, M.; Kumšta, M.; Nečas, T. Health-Benefitting Biologically Active Substances in Edible Apricot Flowers. HortSci. 2020, 55(8), 1372–1377. DOI: 10.21273/HORTSCI15038-20.
  • Pensamiento-Niño, C. A.; Campos-Montiel, R. G.; Añorve-Morga, J.; Ramírez-Moreno, E.; Ascacio-Valdés, sJ. A.; Hernández-Fuentes, A. D. Nutritional Characterization of the Functional and Antioxidant Activity of Cactus Flowers from Hidalgo, Mexico. Appl. Sci. 2021, 11(13), 5965. DOI: 10.3390/app11135965.
  • Rivera-Espejel, E. A.; Cruz-Álvarez, O.; Mejía-Muñoz, J. M.; García-Mateos, M. R.; Colinas-León, M. T.; Martínez-Damián, M. T. Physicochemical Quality, Antioxidant Capacity and Nutritional Value of Edible Flowers of Some Wild Dahlia Species. Folia Hortic. 2019, 31(2), 331–342. DOI: 10.2478/fhort-2019-0026.
  • Mulík, S.; Ozuna, C. Mexican Edible Flowers: Cultural Background, Traditional Culinary Uses, and Potential Health Benefits. Int. J. Gastron. Food Sci. 2020, 21, 100235. DOI: 10.1016/j.ijgfs.2020.100235.
  • Pinedo-Espinoza, J. M.; Gutiérrez-Tlahque, J.; Santiago-Saenz, Y. O.; Aguirre-Mancilla, C. L.; Reyes-Fuentes, M.; López-Palestina, C. U. Nutritional Composition, Bioactive Compounds and Antioxidant Activity of Wild Edible Flowers Consumed in Semiarid Regions of Mexico. Plant Foods Hum. Nutr. 2020, 75, 413–419. DOI: 10.1007/s11130-020-00822-2.
  • López-Cervantes, J.; Sánchez-Machado, D. I.; Cruz-Flores, P.; Mariscal-Domínguez, M. F.; de la Mora-López, G. S.; Campas-Baypoli, O. N. Antioxidant Capacity, Proximate Composition, and Lipid Constituents of Aloe Vera Flowers. J. Appl. Res. Med. Aromat. Plants. 2018, 10, 93–98. DOI: 10.1016/j.jarmap.2018.02.004.
  • Martínez-Damián, M. T.; Mejía-Muñoz, J. M.; Colinas-León, M. T.; Hernández-Epigmenio, F.; Cruz-Alvarez, O. Nutritional Value, Bioactive Compounds and Capacity Antioxidant in Edible Flowers of Dahlia. Acta Sci. Pol. Hortorum Cultus. 2021, 20(5), 63–72. DOI: 10.24326/asphc.2021.5.6.
  • Fernandes, L.; Casal, S.; Pereira, J. A.; Saraiva, J. A.; Ramalhosa, E. Edible Flowers: A Review of the Nutritional, Antioxidant, Antimicrobial Properties and Effects on Human Health. J. Food Compost. Anal. 2017, 60, 38–50. DOI: 10.1016/j.jfca.2017.03.017.
  • Park, C. H.; Yeo, H. J.; Park, C.; Chung, Y. S.; Park, S. U. The Effect of Different Drying Methods on Primary and Secondary Metabolites in Korean Mint Flower. Agron. 2021, 11(4), 698. DOI: 10.3390/agronomy11040698.
  • Li, Z.; Zhang, J.; Meng, Q.; Yang, L.; Qiu, M.; Li, Y.; Yao, S.; Wei, W.; Yao, C.; Bi, Q., et al. The Content and Distribution of 18 Phenolic Compounds in 462 Batches of Edible Flowers from 73 Species Commercially Available in China. Food. Res. Int. 2023, 166, 112590. DOI: 10.1016/j.foodres.2023.112590.
  • Janda, K.; Jakubczyk, K.; Kupnicka, P.; Bosiacki, M.; Gutowska, I. Mineral Composition and Antioxidant Potential in the Common Poppy (Papaver Rhoeas L.) Petal Infusions. Biol. Trace Elem. Res. 2021, 199(1), 371–381. DOI: 10.1007/s12011-020-02134-7.
  • Zhang, W.; Zhao, J. J.; Zhang, X.; Zhang, N. S.; Guo, Y. P.; Ren, X. L.; Mei, L. X. Analysis of Nutrients, Bioactive Compounds, and Antioxidants in Apple Flowers at Two Stages of Flowering. Acta Hortic. 2019, 1261, 109–114. DOI: 10.17660/ActaHortic.2019.1261.18.
  • El-Jendoubi, H.; Abadía, J.; Abadía, A. Assessment of Nutrient Removal in Bearing Peach Trees (Prunus persica L. Batsch) Based on Whole Tree Analysis. Plant Soil. 2013, 369, 421–437. DOI: 10.1007/s11104-012-1556-1.
  • Tomasik, P.; Tomasik, P. Chemical and Functional Properties of Food Saccharides; CRC Press: USA, 2003. DOI: 10.1201/9780203495728.
  • Rachkeeree, A.; Kantadoung, K.; Suksathan, R.; Puangpradab, R.; Page, P. A.; Sommano, S. R. Nutritional Compositions and Phytochemical Properties of the Edible Flowers from Selected Zingiberaceae Found in Thailand. Front Nutr. 2018, 5, 3. DOI: 10.3389/fnut.2018.00003.
  • Lee, J.; Durst, R. W.; Wrolstad, R. E.; Eisele, T.; Giusti, M. M.; Hach?, J.; Hofsommer, H.; Koswig, S.; Krueger, D. A.; Kupina, S. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88(5), 1269–1278. DOI: 10.1093/jaoac/88.5.1269.
  • Waterman, P. G.; Mole, S. Analysis of Phenolic Plant Metabolites; Blackwell Scientific: USA, 1994.
  • Aryouet-Grand, A.; Vennat, B.; Pouratt, A.; Legret, P. [Standardization of Propolis Extract and Identification of Principal Constituents]. J. Pharm. Belg. 1994, 49(6), 462–468.
  • Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic Biol Med. 1999, 26(9–10), 1231–1237. DOI: 10.1016/s0891-5849(98)00315-3.
  • Benzie, I. F.; Strain, J. J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant power”: The FRAP Assay. Anal. Biochem. 1996, 239(1), 70–76. DOI: 10.1006/abio.1996.0292.
  • Brand-Williams, W.; Cuvelier, M. E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28(1), 25–30. DOI: 10.1016/S0023-6438(95)80008-5.
  • Hanusz, Z.; Tarasińska, J. Normalization of the Kolmogorov-Smirnov and Shapiro-Wilk Tests of Normality. Biom. Letters. 2015, 52(2), 85–93. DOI: 10.1515/bile-2015-0008.
  • Lara-Cortés, E.; Martín-Belloso, O.; Osorio-Díaz, P.; Barrera-Necha, L. L.; Sánchez-López, J. A.; Bautista-Baños, S. Antioxidant Capacity, Nutritional and Functional Composition of Edible Dahlia Flowers. Rev. Chapingo, Ser. Hortic. 2014, 20(1), 101–116. DOI: 10.5154/r.rchsh.2013.07.024.
  • de Lima-Franzen, F.; Rodrigues de Oliveira, M. S.; Lidório, H. F.; Farias-Menegaes, J.; Martins-Fries, L. L. Composición química de pétalos de flores de rosa, girasol y caléndula para su uso en la alimentación humana. CTA. 2019, 20(1), 149–168. DOI: 10.21930/rcta.vol20_num1_art:1252.
  • Primitivo, M. J.; Neves, M.; Pires, C. L.; Cruz, P. F.; Brito, C.; Rodrigues, A. C.; de Carvalho, C. C. C. R.; Mortimer, M. M.; Moreno, M. J.; Brito, R. M. M., et al. Edible Flowers of Helichrysum italicum: Composition, Nutritive Value, and Bioactivities. Food. Res. Int. 2022, 157, 111399. DOI: 10.1016/j.foodres.2022.111399.
  • Chensom, S.; Okumura, H.; Mishima, T. Primary Screening of Antioxidant Activity, Total Polyphenol Content, Carotenoid Content, and Nutritional Composition of 13 Edible Flowers from Japan. Prev. Nutr. Food Sci. 2019, 24(2), 171. DOI: 10.3746/pnf.2019.24.2.171.
  • Tian, J.; Gong, Y.; Li, J. Nutritional Attributes and Phenolic Composition of Flower and Bud of Sophora Japonica L. and Robinia pseudoacacia L. Molecules. 2022, 27(24), 8932. DOI: 10.3390/molecules27248932.
  • Zhao, L.; Fan, H.; Zhang, M.; Chitrakar, B.; Bhandari, B.; Wang, B. Edible Flowers: Review of Flower Processing and Extraction of Bioactive Compounds by Novel Technologies. Food. Res. Int. 2019, 126, 108660. DOI: 10.1016/j.foodres.2019.108660.
  • Santos, I. C. D.; Reis, S. N. Edible Flowers: Traditional and Current Use. Ornam. Hortic. 2021, 27(4), 438–445. DOI: 10.1590/2447-536x.v27i4.2392.
  • Van der Kooi, C. J.; Spaethe, J. Caution with Colour Calculations: Spectral Purity is a Poor Descriptor of Flower Colour Visibility. Ann. Bot. 2022, 130(1), 1–9. DOI: 10.1093/aob/mcac069.
  • Ohmiya, A. Qualitative and Quantitative Control of Carotenoid Accumulation in Flower Petals. Sci. Hortic. 2013, 163, 10–19. DOI: 10.1016/j.scienta.2013.06.018.
  • Purohit, S. R.; Rana, S. S.; Idrishi, R.; Sharma, V.; Ghosh, P. A Review on Nutritional, Bioactive, Toxicological Properties and Preservation of Edible Flowers. Future Foods. 2021, 4, 100078. DOI: 10.1016/j.fufo.2021.100078.
  • Hudina, M.; Štampar, F. Influence of Frost Damage on the Sugars and Organic Acids Contents in Apple and Pear Flowers. Eur. J. Hortic. Sci. 2006, 71(4), 161–164.
  • Pereira, C.; Barros, L.; Carvalho, A. M.; Ferreira, I. C. Use of UFLC-PDA for the Analysis of Organic Acids in Thirty-Five Species of Food and Medicinal Plants. Food Anal. Methods. 2013, 6(5), 1337–1344. DOI: 10.1007/s12161-012-9548-6.
  • Famiani, F.; Battistelli, A.; Moscatello, S.; Cruz-Castillo, J. G.; Walker, R. P. The Organic Acids That are Accumulated in the Flesh of Fruits: Occurrence, Metabolism and Factors Affecting Their Contents - a Review. Rev. Chapingo, Ser. Hortic. 2015, 21(2), 97–128. DOI: 10.5154/r.rchsh.2015.01.004.
  • Fakhri, S.; Tomas, M.; Capanoglu, E.; Hussain, Y.; Abbaszadeh, F.; Lu, B.; Hu, X.; Wu, J.; Zou, L.; Smeriglio, A., et al. Antioxidant and Anticancer Potentials of Edible Flowers: Where Do We Stand? Crit. Rev. Food Sci. Nutr. 2022, 62(31), 8589–8645. DOI: 10.1080/10408398.2021.1931022.
  • Demasi, S.; Caser, M.; Scariot, V. Hot and Cold Drying of Edible Flowers Affect Metabolite Patterns of Extracts and Decoctions. Folia Hortic. 2023, 35(1), 193–207. DOI: 10.2478/fhort-2023-0015.
  • Drava, G.; Iobbi, V.; Govaerts, R.; Minganti, V.; Copetta, A.; Ruffoni, B.; Bisio, A. Trace Elements in Edible Flowers from Italy: Further Insights into Health Benefits and Risks to Consumers. Molecules. 2020, 25(12), 2891. DOI: 10.3390/molecules25122891.
  • Weixing, L.; Shunbo, Y.; Hui, C.; Yanmin, H.; Jun, T.; Chunhua, Z. Nutritional Evaluation of Herbaceous Peony (Paeonia Lactiflora Pall.) Petals. Emir. J. Food Agric. 2017, 518–531. DOI: 10.9755/ejfa.2017-05-1061.
  • Młynarczyk, K.; Walkowiak-Tomczak, D.; Staniek, H.; Kidoń, M.; Łysiak, G. P. The Content of Selected Minerals, Bioactive Compounds, and the Antioxidant Properties of the Flowers and Fruit of Selected Cultivars and Wildly Growing Plants of Sambucus Nigra L. Molecul. 2020, 25(4), 876. DOI: 10.3390/molecules25040876.
  • Ammar, I.; Ennouri, M.; Attia, H. Phenolic Content and Antioxidant Activity of Cactus (Opuntia ficus-indica L.) Flowers are Modified According to the Extraction Method. Ind. Crops Prod. 2015, 64, 97–104. DOI: 10.1016/j.indcrop.2014.11.030.
  • Rop, O.; Mlcek, J.; Jurikova, T.; Neugebauerova, J.; Vabkova, J. Edible Flowers - a New Promising Source of Mineral Elements in Human Nutrition. Molecul. 2012, 17(6), 6672–6683. DOI: 10.3390/molecules17066672.
  • Chen, Q.; Xu, B.; Huang, W.; Amrouche, A. T.; Maurizio, B.; Simal-Gandara, J.; Tundis, R.; Xiao, J.; Lu, B. Edible Flowers as Functional Raw Materials: A Review on Anti-Aging Properties. Trends Food Sci. Technol. 2020, 106, 30–47. DOI: 10.1016/j.tifs.2020.09.023.
  • Benvenuti, S.; Mazzoncini, M. The Biodiversity of Edible Flowers: Discovering New Tastes and New Health Benefits. Front Plant Sci. 2021, 11, 1–14. DOI: 10.3389/fpls.2020.569499.
  • Prabawati, N. B.; Oktavirina, V.; Palma, M.; Setyaningsih, W. Edible Flowers: Antioxidant Compounds and Their Functional Properties. Horticult. 2021, 7(4), 66. DOI: 10.3390/horticulturae7040066.
  • Janarny, G.; Ranaweera, K. K. D. S.; Gunathilake, K. D. P. P. Antioxidant Activities of Hydro-Methanolic Extracts of Sri Lankan Edible Flowers. Biocatal Agric. Biotechnol. 2021, 35, 102081. DOI: 10.1016/j.bcab.2021.102081.
  • Rodríguez‐Roque, M. J.; Soliva‐Fortuny, R.; Martín‐Belloso, O. Methods for Determining the Antioxidant Capacity of Food Constituents; USA: Wiley, 2017. DOI: 10.1002/9781119158042.ch36.
  • Kandylis, P. Phytochemicals and Antioxidant Properties of Edible Flowers. Appl. Sci. 2022, 12(19), 9937. DOI: 10.3390/app12199937.
  • Wink, M. Introduction: Biochemistry, Physiology and Ecological Functions of Secondary Metabolites; USA: Wiley, 2010. DOI: 10.1002/9781444318876.ch1.
  • Bhat, B. A.; Islam, S. T.; Ali, A.; Sheikh, B. A.; Tariq, L.; Islam, S. U.; Hassan-Dar, T. U. Role of Micronutrients in Secondary Metabolism of Plants; Springer International Publishing: USA, 2020. DOI: 10.1007/978-3-030-49856-6_13.