961
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Production of the exopolysaccharide from Lactiplantibacillus plantarum YT013 under different growth conditions: optimum parameters and mathematical analysis

ORCID Icon, , , , , , , , , , & show all
Pages 1941-1952 | Received 14 Apr 2023, Accepted 16 Jul 2023, Published online: 25 Jul 2023

References

  • Cerning, J. Exocellular Polysaccharides Produced by Lactic Acid Bacteria. FEMS Microbiol. Rev. 1990, 87(1–2), 113–130. https://doi.org/10.1111/j.1574-6968.1990.tb04883.x.
  • Yang, Z.; Li, S.; Zhang, X.; Zeng, X.; Li, D.; Zhao, Y.; Zhang, J. Capsular and Slime-Polysaccharide Production by Lactobacillus Rhamnosus JAAS8 Isolated from Chinese Sauerkraut: Potential Application in Fermented Milk Products. J. Biosci. Bioeng. 2010, 110(1), 53–57. DOI: 10.1016/j.jbiosc.2009.12.010.
  • Castillo Pedraza, M. C.; Novais, T. F.; Faustoferri, R. C.; Quivey, R. G.; Terekhov, A.; Hamaker, B. R.; Klein, M. I. Extracellular DNA and Lipoteichoic Acids Interact with Exopolysaccharides in the Extracellular Matrix of Streptococcus Mutans Biofilms. Biofouling. 2017, 33(9), 722–740. DOI: 10.1080/08927014.2017.1361412.
  • Bajpai, V. K.; Rather, I. A.; Park, Y. H. Partially Purified Exo-Polysaccharide from Lactobacillus Sakei Probio 65 with Antioxidant, α-Glucosidase and Tyrosinase Inhibitory Potential. J. Food Biochem. 2016, 40(3), 264–274. DOI: 10.1111/jfbc.12230.
  • Lynch, K. M.; Zannini, E.; Coffey, A.; Arendt, E. K. Lactic Acid Bacteria Exopolysaccharides in Foods and Beverages: Isolation, Properties, Characterization, and Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9(1), 155–176. https://doi.org/10.1146/annurev-food-030117-012537.
  • Urshev, Z. L.; Dimitrov, Z. P.; Fatchikova, N. S.; Petrova, I. G.; Ishlimova, D. I. Partial Characterization and Dynamics of Synthesis of High Molecular Mass Exopolysaccharides from Lactobacillus delbrueckii Ssp. Bulgaricus and Streptococcus Thermophilus Bulgaricus and Streptococcus thermophilus. World J. Microb Biot. 2007, 24(2), 171–179. DOI: 10.1007/s11274-007-9453-0.
  • Zannini, E.; Waters, D. M.; Coffey, A.; Arendt, E. K. Production, Properties, and Industrial Food Application of Lactic Acid Bacteria-Derived Exopolysaccharides. Appl. Microbiol. Biotechnol. 2016, 100(3), 1121–1135. DOI: 10.1007/s00253-015-7172-2.
  • Prajapati, V. D.; Jani, G. K.; Khanda, S. M. Pullulan: An Exopolysaccharide and Its Various Applications. Carbohydr. Polym. 2013, 95(1), 540–549. DOI: 10.1016/j.carbpol.2013.02.082.
  • Zhou, Y.; Cui, Y.; Qu, X. Exopolysaccharides of Lactic Acid Bacteria: Structure, Bioactivity and Associations: A Review. Carbohydr. Polym. 2019, 207, 317–332. DOI: 10.1016/j.carbpol.2018.11.093.
  • Nwodo, U.; Green, E.; Okoh, A. Bacterial Exopolysaccharides: Functionality and Prospects. Int. J. Mol. Sci. 2012, 1(12), 14002–14015. DOI: 10.3390/ijms131114002.
  • Liang, T. W.; Wang, S. L. Recent Advances in Exopolysaccharides from Paenibacillus Spp.: Production, Isolation, Structure, and Bioactivities. Mar. Drugs. 2015, 13(4), 1847–1863. DOI: 10.3390/md13041847.
  • Wang, J.; Zhao, X.; Yang, Y.; Zhao, A.; Yang, Z. Characterization and Bioactivities of an Exopolysaccharide Produced by Lactobacillus Plantarum YW32. Int. J. Biol Macromol. 2015, 74, 119–126. DOI: 10.1016/j.ijbiomac.2014.12.006.
  • Ismail, B.; Nampoothiri, K. M. Exposition of Antitumour Activity of a Chemically Characterized Exopolysaccharide from a Probiotic Lactobacillus Plantarum MTCC 9510. Biologia. (Bratisl). 2013, 68(6), 1041–1047. DOI: 10.2478/s11756-013-0275-2.
  • Wang, K.; Li, W.; Rui, X.; Chen, X.; Jiang, M.; Dong, M. Characterization of a Novel Exopolysaccharide with Antitumor Activity from Lactobacillus Plantarum 70810. Int. J. Biol Macromol. 2014, 63, 133–139. DOI: 10.1016/j.ijbiomac.2013.10.036.
  • Jiang, B.; Tian, L.; Huang, X.; Liu, Z.; Jia, K.; Wei, H.; Tao, X. Characterization and Antitumor Activity of Novel Exopolysaccharide APS of Lactobacillus Plantarum WLPL09 from Human Breast Milk. Int. J .Biol Macromol. 2020, 163, 985–995. DOI: 10.1016/j.ijbiomac.2020.06.277.
  • Adesulu-Dahunsi, A. T.; Sanni, A. I.; Jeyaram, K.; Ojediran, J. O.; Ogunsakin, A. O.; Banwo, K. Extracellular Polysaccharide from Weissella confusa OF126: Production, Optimization, and Characterization. Int. J. Biol Macromol. 2018, 111, 514–525. DOI: 10.1016/j.ijbiomac.2018.01.060.
  • Zhou, X.; Qi, W.; Hong, T.; Xiong, T.; Gong, D.; Xie, M.; Nie, S. Exopolysaccharides from Lactobacillus Plantarum NCU116 Regulate Intestinal Barrier Function via STAT3 Signaling Pathway. J. Agric. Food. Chem. 2018, 66(37), 9719–9727. DOI: 10.1021/acs.jafc.8b03340.
  • Wu, Z.; Lu, J.; Wang, X.; Hu, B.; Ye, H.; Fan, J.; Abid, M.; Zeng, X. Optimization for Production of Exopolysaccharides with Antitumor Activity in vitro from Paecilomyces Hepiali. Carbohydr. Polym. 2014, 99, 226–234. DOI: 10.1016/j.carbpol.2013.08.010.
  • Wang, X.; Shao, C.; Liu, L.; Guo, X.; Xu, Y.; Lü, X. Optimization, Partial Characterization and Antioxidant Activity of an Exopolysaccharide from Lactobacillus Plantarum KX041. Int. J. Biol Macromol. 2017, 103, 1173–1184. DOI: 10.1016/j.ijbiomac.2017.05.118.
  • Xiao, L.; Ge, X.; Yang, L.; Chen, X.; Xu, Q.; Rui, X.; Fan, X.; Feng, L.; Zhang, Q.; Dong, M., et al. Anticancer Potential of an Exopolysaccharide from Lactobacillus helveticus MB2-1 on Human Colon Cancer HT-29 Cells via Apoptosis Induction. Food. Funct. 2020, 11(11), 10170–10181. DOI: 10.1039/d0fo01345e.
  • Zhang, R.; Zhou, Z.; Ma, Y.; Du, K.; Sun, M.; Zhang, H.; Tu, H.; Jiang, X.; Lu, J.; Tu, L., et al. Anti-Gastric Cancer Activity of the Cell-Free Culture Supernatant of Serofluid Dish and Lactiplantibacillus plantarum YT013. Front. Bioeng. Biotechnol. 2022, 10, 10. DOI: 10.3389/fbioe.2022.898240.
  • Suberu, Y.; Akande, I.; Samuel, T.; Lawal, A.; Olaniran, A. Optimization of Protease Production in Indigenous Bacillus Species Isolated from Soil Samples in Lagos, Nigeria Using Response Surface Methodology. Biocatal Agric. Biotechnol. 2019, 18, 101011. DOI: 10.1016/j.bcab.2019.01.049.
  • Adamberg, K. The Effect of Temperature and pH on the Growth of Lactic Acid Bacteria: A Ph-Auxostat Study. Int. J. Food Microbiol. 2003, 85(1–2), 171–183. DOI: 10.1016/s0168-1605(02)00537-8.
  • Rhee, S. K.; Pack, M. Y. Effect of Environmental pH on Fermentation Balance of Lactobacillus Bulgaricus. J. Bacteriol. 1980, 144(1), 217–221. DOI: 10.1128/jb.144.1.217-221.1980.
  • Bhunia, B.; Basak, B.; Mandal, T.; Bhattacharya, P.; Dey, A. Effect of pH and Temperature on Stability and Kinetics of Novel Extracellular Serine Alkaline Protease (70 kDa). Int. J. Biol. Macromol. 2013, 54, 1–8. DOI: 10.1016/j.ijbiomac.2012.11.024.
  • Li, W.; Ji, J.; Chen, X.; Jiang, M.; Rui, X.; Dong, M. Structural Elucidation and Antioxidant Activities of Exopolysaccharides from Lactobacillus helveticus MB2-1. Carbohydr. Polym. 2014, 102, 351–359. DOI: 10.1016/j.carbpol.2013.11.053.
  • Raza, W.; Makeen, K.; Wang, Y.; Xu, Y.; Qirong, S. Optimization, Purification, Characterization and Antioxidant Activity of an Extracellular Polysaccharide Produced by Paenibacillus polymyxa SQR-21. Bioresources. Technol. 2011, 102(10), 6095–6103. DOI: 10.1016/j.biortech.2011.02.033.
  • Ding, X.; Hou, Y. L.; Hou, W. R. Structure Elucidation and Antioxidant Activity of a Novel Polysaccharide Isolated from Boletus Speciosus Forst. Int. J. Biol Macromol. 2012, 50(3), 613–618. DOI: 10.1016/j.ijbiomac.2012.01.021.
  • Abusham, R. A.; Rahman, R. N. Z. R.; Salleh, A. B.; Basri, M. Optimization of Physical Factors Affecting the Production of Thermo-Stable Organic Solvent-Tolerant Protease from a Newly Isolated Halo Tolerant Bacillus subtilis Strain Rand. Microb. Cell Fact. 2009, 8(1), 20. DOI: 10.1186/1475-2859-8-20.
  • Banerjee, S.; Maiti, T. K.; Roy, R. N. Protease Production by Thermo-Alkaliphilic Novel Gut Isolate Kitasatospora Cheerisanensis GAP 12.4 from Gryllotalpa Africana. Biocatal. Biotransform. 2017, 35(3), 168–176. DOI: 10.1080/10242422.2017.1306739.
  • Imran, M. Y.; Reehana, N.; Jayaraj, K. A.; Ahamed, A. A. P.; Dhanasekaran, D.; Thajuddin, N.; Alharbi, N. S.; Muralitharan, G. Statistical Optimization of Exopolysaccharide Production by Lactobacillus Plantarum NTMI05 and NTMI20. Int. J. Biol Macromol. 2016, 93, 731–745. DOI: 10.1016/j.ijbiomac.2016.09.007.
  • Pacheco, N.; Garnica-Gonzalez, M.; Ramirez-Hernandez, J. Y.; Flores-Albino, B.; Gimeno, M.; Bárzana, E.; Shirai, K. Effect of Temperature on Chitin and Astaxanthin Recoveries from Shrimp Waste Using Lactic Acid Bacteria. Bioresources. Technol. 2009, 100(11), 2849–2854. DOI: 10.1016/j.biortech.2009.01.019.
  • Mehta, A.; Bodh, U.; Gupta, R. Isolation of a Novel Lipase Producing Fungal Isolate Aspergillus Fumigatus and Production Optimization of Enzyme. Biocatal. Biotransformation. 2018, 36(6), 450–457. DOI: 10.1080/10242422.2018.1447565.
  • Gandhi, H. P.; Ray, R. M.; Patel, R. M. Exopolymer Production by Bacillus Species. Carbohydr. Polym. 1997, 34(4), 323–327. DOI: 10.1016/S0144-8617(97)00132-X.
  • Taneja, K.; Kumar Bajaj, B.; Kumar, S.; Dilbaghi, N. Process Optimization for Production and Purification of Novel Fibrinolytic Enzyme from Stenotrophomonas sp. KG-16-3. Biocatal. Biotransformation. 2018, 37(2), 124–138. DOI: 10.1080/10242422.2018.1504925.
  • Petry, S.; Furlan, S.; Crepeau, M. J.; Cerning, J.; Desmazeaud, M. Factors Affecting Exocellular Polysaccharide Production by Lactobacillus delbrueckii Subsp. Bulgaricus Grown in a Chemically Defined Medium. Appl. Environ. Microbiol. 2000, 66(8), 3427–3431. DOI: 10.1128/AEM.66.8.3427-3431.2000.
  • Li, Q. M.; Shi, Z.; Xiong, X. Y.; Wen, Q.; Hu, Q.-L.; Su, X.-J. Ethanol Production from Xylose by Fusarium oxysporum and the Optimization of Culture Conditions. Biocatal. Biotransformation. 2016, 34(3), 110–118. DOI: 10.1080/10242422.2016.1212848.
  • Zou, X. Optimization of Nutritional Factors for Exopolysaccharide Production by Submerged Cultivation of the Medicinal Mushroom Oudemansiella Radicata. World J. Microb. Bio. 2005, 21(6–7), 1267–1271. DOI: 10.1007/s11274-005-1941-5.
  • Cui, J. D.; Zhang, Y. N. Evaluation of Metal Ions and Surfactants Effect on Cell Growth and Exopolysaccharide Production in Two-Stage Submerged Culture of Cordyceps Militaris. Appl. Biochem. Biotechnol. 2012, 168(6), 1394–1404. DOI: 10.1007/s12010-012-9865-7.
  • Xue, Q.; Sun, J.; Zhao, M.; Zhang, K.; Lai, R. Immunostimulatory and Anti-Tumor Activity of a Water-Soluble Polysaccharide from Phellinus Baumii Mycelia. World J. Microb. Bio. 2010, 27(5), 1017–1023. DOI: 10.1007/s11274-010-0545-x.
  • Wei, D.; Wei, Y.; Cheng, W.; Zhang, L. Sulfated Modification, Characterization and Antitumor Activities of Radix Hedysari Polysaccharide. Int. J. Biol. Macromol. 2012, 51(4), 471–476. DOI: 10.1016/j.ijbiomac.2012.06.004.
  • Sirajunnisa, A. R.; Vijayagopal, V.; Sivaprakash, B.; Viruthagiri, T.; Surendhiran, D. Optimization, Kinetics and Antioxidant Activity of Exopolysaccharide Produced from Rhizosphere Isolate, Pseudomonas fluorescens CrN6. Carbohydr. Polym. 2016, 135, 35–43. DOI: 10.1016/j.carbpol.2015.08.080.