1,593
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Advances in Alzheimer’s disease therapeutics: biochemistry, exploring bioactive compounds and novel approaches

ORCID Icon, , &
Pages 2091-2127 | Received 01 May 2023, Accepted 27 Jul 2023, Published online: 03 Aug 2023

References

  • Iqbal, K.; Grundke-Iqbal, I. Alzheimer’s Disease, a Multifactorial Disorder Seeking Multitherapies. Alzheimer’s & Dementia. 2010, 6(5), 420–424. DOI: 10.1016/j.jalz.2010.04.006.
  • Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules. 2019, 24(8), 1583. DOI: 10.3390/molecules24081583.
  • Cobley, J. N.; Fiorello, M. L.; Bailey, D. M. 13 Reasons Why the Brain is Susceptible to Oxidative Stress. Redox Biol. 2018, 15, 490–503. DOI: 10.1016/j.redox.2018.01.008.
  • Oboh, G.; Rocha, J. B. T. Antioxidant and Neuroprotective Properties of Sour Tea (Hibiscus Sabdariffa, Calyx) and Green Tea (Camellia Sinensis) on Some Pro-Oxidant-Induced Lipid Peroxidation in Brain In Vitro. Food Biophys. 2008, 3(4), 382–389. DOI: 10.1007/s11483-008-9092-5.
  • Isik, A. T. Late Onset Alzheimer’s Disease in Older People. Clin. Interventions Aging. 2010, 307–311. DOI: 10.2147/CIA.S11718.
  • Macdonald, I. R.; Rockwood, K.; Martin, E.; Darvesh, S. Cholinesterase Inhibition in Alzheimer’s Disease: Is Specificity the Answer? J. Alzheimer’s Dis. 2014, 42(2), 379–384. DOI: 10.3233/JAD-140219.
  • Webber, K. M.; Raina, A. K.; Marlatt, M. W.; Zhu, X.; Prat, M. I.; Morelli, L.; Smith, M. A. The Cell Cycle in Alzheimer Disease: A Unique Target for Neuropharmacology. Mech. Ageing Dev. 2005, 126(10), 1019–1025. DOI: 10.1016/j.mad.2005.03.024.
  • Michalke, B.; Willkommen, D.; Drobyshev, E.; Solovyev, N. The Importance of Speciation Analysis in Neurodegeneration Research. TrAc Trends Anal. Chem. 2018, 104, 160–170. DOI: 10.1016/j.trac.2017.08.008.
  • Oboh, G.; Agunloye, O. M.; Akinyemi, A. J.; Ademiluyi, A. O.; Adefegha, S. A. Comparative Study on the Inhibitory Effect of Caffeic and Chlorogenic Acids on Key Enzymes Linked to Alzheimer’s Disease and Some Pro-Oxidant Induced Oxidative Stress in rats’ Brain-In Vitro. Neurochem. Res. 2013a, 38(2), 413–419. DOI: 10.1007/s11064-012-0935-6.
  • Zago, M. P.; Verstraeten, S. V.; Oteiza, P. I. Zinc in the Prevention of Fe2+ initiated Lipid and Protein Oxidation. Biol. Res. 2000, 33, 143–150. DOI: 10.4067/S0716-97602000000200014.
  • Wimo, A.; Guerchet, M.; Ali, G.-C.; Wu, Y.-T.; Prina, A. M.; Winblad, B.; Jönsson, L.; Liu, Z.; Prince, M. The Worldwide Costs of Dementia 2015 and Comparisons with 2010. Alzheimer’s & Dementia. 2017, 13, 1–7. DOI: 10.1016/j.jalz.2016.07.150.
  • Herrmann, L. K.; Welter, E.; Leverenz, J.; Lerner, A. J.; Udelson, N.; Kanetsky, C.; Sajatovic, M. A Systematic Review of Dementia-Related Stigma Research: Can We Move the Stigma Dial? Am. J. Geriatric Psychiatry. 2018, 26(3), 316–331. DOI: 10.1016/j.jagp.2017.09.006.
  • Podcasy, J. L.; Epperson, C. N. Considering Sex and Gender in Alzheimer Disease and Other Dementias. Dialogues Clin. Neurosci. 2022, 18, 2016(4), 437–446.
  • Mahdi, O.; Baharuldin, M. T. H.; Nor, N. H. M.; Chiroma, S. M.; Jagadeesan, S.; Moklas, M. A. M. Chemicals Used for the Induction of Alzheimer’s Disease-Like Cognitive Dysfunctions in Rodents. Biomed. Res. Ther. 2019, 6, 3460–3484. DOI: 10.15419/bmrat.v6i11.575.
  • Nakanishi, M.; Igarashi, A.; Ueda, K.; Brnabic, A. J. M.; Treuer, T.; Sato, M.; Kahle-Wrobleski, K.; Meguro, K.; Yamada, M.; Mimura, M. Costs and Resource Use Associated with Community-Dwelling Patients with Alzheimer’s Disease in Japan: Baseline Results from the Prospective Observational GERAS-J Study. J. Alzheimer’s Dis. 2020, 74, 127–138. DOI: 10.3233/JAD-190811.
  • Ferreira, M. E. S.; de Vasconcelos, A. S.; da Costa Vilhena, T.; da Silva, T. L.; da Silva Barbosa, A.; Gomes, A. R. Q.; Dolabela, M. F.; Percário, S. Oxidative Stress in Alzheimer’s Disease: Should We Keep Trying Antioxidant Therapies? Cell Mol. Neurobiol. 2015, 35, 595–614. DOI: 10.1007/s10571-015-0157-y.
  • Liu, P.-P.; Xie, Y.; Meng, X.-Y.; Kang, J.-S. History and Progress of Hypotheses and Clinical Trials for Alzheimer’s Disease. Signal Transduct. Target. Ther. 2019, 4, 29. DOI: 10.1038/s41392-019-0063-8.
  • Peera, K.; Yellamma, K. Sericin as a Chlinergic Modulator in Alzaeimer’s Disease Induced Rat. Int. J. Pharm. Pharm. Sci. 2015, 7, 108–112.
  • Wu, T.; Dejanovic, B.; Gandham, V. D.; Gogineni, A.; Edmonds, R.; Schauer, S.; Srinivasan, K.; Huntley, M. A.; Wang, Y.; Wang, T.-M. Complement C3 is Activated in Human AD Brain and is Required for Neurodegeneration in Mouse Models of Amyloidosis and Tauopathy. Cell. Rep. 2019, 28, 2111–2123. DOI: 10.1016/j.celrep.2019.07.060.
  • Butterfield, D. A.; Halliwell, B. Oxidative Stress, Dysfunctional Glucose Metabolism and Alzheimer Disease. Nat. Rev. Neurosci. 2019, 20(3), 148–160. DOI: 10.1038/s41583-019-0132-6.
  • Markesbery, W. R.; Lovell, M. A. Damage to Lipids, Proteins, DNA, and RNA in Mild Cognitive Impairment. Arch. Neurol. 2007, 64(7), 954–956. DOI: 10.1001/archneur.64.7.954.
  • Waldemar, G.; Dubois, B.; Emre, M.; Georges, J.; McKeith, I. G.; Rossor, M.; Scheltens, P.; Tariska, P.; Winblad, B. Recommendations for the Diagnosis and Management of Alzheimer’s Disease and Other Disorders Associated with Dementia: EFNS Guideline. Eur. J. Neurol. 2007, 14(1), e1–e26. DOI: 10.1111/j.1468-1331.2006.01605.x.
  • Ritchie, C.; Smailagic, N.; Noel‐Storr, A. H.; Takwoingi, Y.; Flicker, L.; Mason, S. E.; McShane, R. Plasma and Cerebrospinal Fluid Amyloid Beta for the Diagnosis of Alzheimer’s Disease Dementia and Other Dementias in People with Mild Cognitive Impairment (MCI). Cochrane Database Syst. Rev. 2014, 6. DOI: 10.1002/14651858.CD008782.pub4.
  • Bäckman, L.; Jones, S.; Berger, A.; Laukka, E. J.; Small, B. J. Multiple Cognitive Deficits During the Transition to Alzheimer’s Disease. J. Intern. Med. 2004, 256(3), 195–204. DOI: 10.1111/j.1365-2796.2004.01386.x.
  • Stella, F.; Radanovic, M.; Balthazar, M. L. F.; Canineu, P. R.; de Souza, L. C.; Forlenza, O. V. Neuropsychiatric Symptoms in the Prodromal Stages of Dementia. Curr. Opin. Psychiatry. 2014, 27, 230–235. DOI: 10.1097/YCO.0000000000000050.
  • Anderson, N. D. State of the Science on Mild Cognitive Impairment (MCI). CNS Spectr. 2019, 24(1), 78–87. DOI: 10.1017/S1092852918001347.
  • Petersen, S. L.; Wang, L.; Yalcin-Chin, A.; Li, L.; Peyton, M.; Minna, J.; Harran, P.; Wang, X. Autocrine TNFα Signaling Renders Human Cancer Cells Susceptible to Smac-Mimetic-Induced Apoptosis. Cancer Cell. 2007, 12(5), 445–456. DOI: 10.1016/j.ccr.2007.08.029.
  • Perrotta, G. Alzheimer’s Disease: Definition, Contexts, Neural Correlates, Strategies and Clinical Approaches. J. Aging Stud. Ther. 2019, 1, 15.
  • Doolen, A. C.; Radvansky, G. A. A Novel Study: Long-Lasting Event Memory. Memory. 2021, 29(8), 963–982. DOI: 10.1080/09658211.2021.1953079.
  • Fraser, K. C.; Meltzer, J. A.; Rudzicz, F. Linguistic Features Identify Alzheimer’s Disease in Narrative Speech. J. Alzheimer’s Dis. 2016, 49, 407–422. DOI: 10.3233/JAD-150520.
  • Svanström, R.; Sundler, A. J. Gradually Losing One’s Foothold–A Fragmented Existence When Living Alone with Dementia. Dementia. 2015, 14(2), 145–163. DOI: 10.1177/1471301213494510.
  • Nishio, Y.; Yokoi, K.; Hirayama, K.; Ishioka, T.; Hosokai, Y.; Gang, M.; Uchiyama, M.; Baba, T.; Suzuki, K.; Takeda, A. Defining Visual Illusions in Parkinson’s Disease: Kinetopsia and Object Misidentification Illusions. Parkinsonism Relat. Disord. 2018, 55, 111–116. DOI: 10.1016/j.parkreldis.2018.05.023.
  • Wimo, A.; Reed, C. C.; Dodel, R.; Belger, M.; Jones, R. W.; Happich, M.; Argimon, J. M.; Bruno, G.; Novick, D.; Vellas, B. The GERAS Study: A Prospective Observational Study of Costs and Resource Use in Community Dwellers with Alzheimer’s Disease in Three European Countries–Study Design and Baseline Findings. J. Alzheimer’s Dis. 2013, 36, 385–399. DOI: 10.3233/JAD-122392.
  • Tarawneh, R.; Holtzman, D. M. The Clinical Problem of Symptomatic Alzheimer Disease and Mild Cognitive Impairment. Cold Spring Harb. Perspect. Med. 2012, 2(5), a006148. DOI: 10.1101/cshperspect.a006148.
  • Sayeed Ahmad, S.; Akhtar, S.; Mohammad Sajid Jamal, Q.; A Kamal, M.; Khan, K. A.; Siddiqui, H. Multiple Targets for the Management of Alzheimer’s Disease. CNS Neurol. Disord-Drug Targets (Formerly Current Drug Targets-CNS & Neurol. Disord). 2016, 15, 1279–1289. DOI: 10.2174/1871527315666161003165855.
  • Goedert, M.; Spillantini, M. G. Propagation of Tau Aggregates. Mol. Brain. 2017, 10(1), 1–9. DOI: 10.1186/s13041-017-0298-7.
  • Onatsu, J.; Vanninen, R.; JÄkÄlÄ, P.; Mustonen, P.; Pulkki, K.; Korhonen, M.; Hedman, M.; Höglund, K.; Blennow, K.; Zetterberg, H. Tau, S100B and NSE as Blood Biomarkers in Acute Cerebrovascular Events. Vivo (Brooklyn). 2020, 34, 2577–2586. DOI: 10.21873/invivo.12075.
  • Chornenkyy, Y.; Fardo, D. W.; Nelson, P. T. Tau and TDP-43 Proteinopathies: Kindred Pathologic Cascades and Genetic Pleiotropy. Lab. Invest. 2019, 99(7), 993–1007. DOI: 10.1038/s41374-019-0196-y.
  • Williams, D. R. Tauopathies: Classification and Clinical Update on Neurodegenerative Diseases Associated with Microtubule‐Associated Protein Tau. Intern. Med. J. 2006, 36(10), 652–660. DOI: 10.1111/j.1445-5994.2006.01153.x.
  • Hensley, K.; Kursula, P. Collapsin Response Mediator Protein-2 (CRMP2) is a Plausible Etiological Factor and Potential Therapeutic Target in Alzheimer’s Disease: Comparison and Contrast with Microtubule-Associated Protein Tau. J. Alzheimer’s Dis. 2016, 53, 1–14. DOI: 10.3233/JAD-160076.
  • Dickson, D. W.; Braak, H.; Duda, J. E.; Duyckaerts, C.; Gasser, T.; Halliday, G. M.; Hardy, J.; Leverenz, J. B.; Del Tredici, K.; Wszolek, Z. K. Neuropathological Assessment of Parkinson’s Disease: Refining the Diagnostic Criteria. Lancet. Neurol. 2009, 8, 1150–1157. DOI: 10.1016/S1474-4422(09)70238-8.
  • Goedert, M. Tau Gene Mutations and Their Effects. Mov. Disord. 2005, 20(S12), S45–S52. DOI: 10.1002/mds.20539.
  • Kadas, D.; Papanikolopoulou, K.; Xirou, S.; Consoulas, C.; Skoulakis, E. M. C. Human Tau Isoform-Specific Presynaptic Deficits in a Drosophila Central Nervous System Circuit. Neurobiol. Dis. 2019, 124, 311–321. DOI: 10.1016/j.nbd.2018.12.004.
  • Sergeant, J. A. Modeling Attention-Deficit/hyperactivity Disorder: A Critical Appraisal of the Cognitive-Energetic Model. Biol. Psychiatry. 2005, 57(11), 1248–1255. DOI: 10.1016/j.biopsych.2004.09.010.
  • Iqbal, K.; Gong, C.-X.; Liu, F. Microtubule-Associated Protein Tau as a Therapeutic Target in Alzheimer’s Disease. Expert Opin. Ther. Targets. 2014, 18, 307–318. DOI: 10.1517/14728222.2014.870156.
  • Henderson, M. X.; Sengupta, M.; Trojanowski, J. Q.; Lee, V. M. Y. Alzheimer’s Disease Tau is a Prominent Pathology in LRRK2 Parkinson’s Disease. Acta Neuropathol. Commun. 2019, 7, 1–16. DOI: 10.1186/s40478-019-0836-x.
  • Šimić, G.; Babić Leko, M.; Wray, S.; Harrington, C.; Delalle, I.; Jovanov-Milošević, N.; Bažadona, D.; Buée, L.; De Silva, R.; Di Giovanni, G. Tau Protein Hyperphosphorylation and Aggregation in Alzheimer’s Disease and Other Tauopathies, and Possible Neuroprotective Strategies. Biomolecules. 2016, 6(1), 6. DOI: 10.3390/biom6010006.
  • Castellani, R. J.; Perry, G. Tau Biology, Tauopathy, Traumatic Brain Injury, and Diagnostic Challenges. J. Alzheimer’s Dis. 2019, 67, 447–467. DOI: 10.3233/JAD-180721.
  • Nizynski, B.; Dzwolak, W.; Nieznanski, K. Amyloidogenesis of Tau Protein. Protein Sci. 2017, 26(11), 2126–2150. DOI: 10.1002/pro.3275.
  • Mokhtar, S. H.; Bakhuraysah, M. M.; Cram, D. S.; Petratos, S. The Beta-Amyloid Protein of Alzheimer’s Disease: Communication Breakdown by Modifying the Neuronal Cytoskeleton. Int. J. Alzheimers Dis. 2013, 2013, 1–15. DOI: 10.1155/2013/910502.
  • Luna-Viramontes, N. I.; Campa-Córdoba, B. B.; Ontiveros-Torres, M. Á.; Harrington, C. R.; Villanueva-Fierro, I.; Guadarrama-Ortíz, P.; Garcés-Ramírez, L.; de la Cruz, F.; Hernandes-Alejandro, M.; Martínez-Robles, S. PHF-Core Tau as the Potential Initiating Event for Tau Pathology in Alzheimer’s Disease. Front. Cell. Neurosci. 2020, 14, 247. DOI: 10.3389/fncel.2020.00247.
  • De Vos, K. J.; Hafezparast, M. Neurobiology of Axonal Transport Defects in Motor Neuron Diseases: Opportunities for Translational Research? Neurobiol. Dis. 2017, 105, 283–299. DOI: 10.1016/j.nbd.2017.02.004.
  • Ising, C.; Heneka, M. T. Functional and Structural Damage of Neurons by Innate Immune Mechanisms During Neurodegeneration. Cell Death Dis. 2018, 9(2), 120. DOI: 10.1038/s41419-017-0153-x.
  • Thornton, C.; Bright, N. J.; Sastre, M.; Muckett, P. J.; Carling, D. AMP-Activated Protein Kinase (AMPK) is a Tau Kinase, Activated in Response to Amyloid β-Peptide Exposure. Biochem. J. 2011, 434(3), 503–512. DOI: 10.1042/BJ20101485.
  • Kimura, T.; Ishiguro, K.; Hisanaga, S. Physiological and Pathological Phosphorylation of Tau by Cdk5. Front Mol. Neurosci. 2014, 7, 65. DOI: 10.3389/fnmol.2014.00065.
  • Forner, S.; Baglietto-Vargas, D.; Martini, A. C.; Trujillo-Estrada, L.; LaFerla, F. M. Synaptic Impairment in Alzheimer’s Disease: A Dysregulated Symphony. Trends Neurosci. 2017, 40, 347–357. DOI: 10.1016/j.tins.2017.04.002.
  • Maccioni, R. B.; Farías, G.; Morales, I.; Navarrete, L. The Revitalized Tau Hypothesis on Alzheimer’s Disease. Arch. Med. Res. 2010, 41(3), 226–231. DOI: 10.1016/j.arcmed.2010.03.007.
  • Amadoro, G.; Corsetti, V.; Ciotti, M. T.; Florenzano, F.; Capsoni, S.; Amato, G.; Calissano, P. Endogenous Aβ Causes Cell Death via Early Tau Hyperphosphorylation. Neurobiol. Aging. 2011, 32(6), 969–990. DOI: 10.1016/j.neurobiolaging.2009.06.005.
  • Roberson, E. D.; Scearce-Levie, K.; Palop, J. J.; Yan, F.; Cheng, I. H.; Wu, T.; Gerstein, H.; Yu, G.-Q.; Mucke, L. Reducing Endogenous Tau Ameliorates Amyloid ß-Induced Deficits in an Alzheimer’s Disease Mouse Model. Science. 2007, 316, 750–754. DOI: 10.1126/science.1141736.
  • Bulic, B.; Pickhardt, M.; Mandelkow, E.-M.; Mandelkow, E. Tau Protein and Tau Aggregation Inhibitors. Neuropharmacology. 2010, 59(4–5), 276–289. DOI: 10.1016/j.neuropharm.2010.01.016.
  • Pîrşcoveanu, D. F. V.; Pirici, I.; Tudorică, V.; Bălşeanu, T.-A.; Albu, V.-C.; Bondari, S.; Bumbea, A. M.; Pîrşcoveanu, M. Tau Protein in Neurodegenerative Diseases-A Review. Rom. J. Morphol. Embryol. 2017, 58, 1141–1150.
  • Alonso, A. D. C.; Li, B.; Grundke-Iqbal, I.; Iqbal, K. Polymerization of Hyperphosphorylated Tau into Filaments Eliminates Its Inhibitory Activity. Proc. Natl. Acad. Sci. USA. 2006, 103(23), 8864–8869. DOI: 10.1073/pnas.0603214103.
  • Cowan, C. M.; Bossing, T.; Page, A.; Shepherd, D.; Mudher, A. Soluble Hyper-Phosphorylated Tau Causes Microtubule Breakdown and Functionally Compromises Normal Tau In Vivo. Acta. Neuropathol. 2010, 120(5), 593–604. DOI: 10.1007/s00401-010-0716-8.
  • Corbo, C. P.; Alonso, A. D. C. Therapeutic Targets in Alzheimer’s Disease and Related Tauopathies. Prog. mol. biol. transl. sci. 2011, 98, 47–83.
  • Steinhilb, M. L.; Dias‐Santagata, D.; Mulkearns, E. E.; Shulman, J. M.; Biernat, J.; Mandelkow, E.; Feany, M. B. S/P and T/P Phosphorylation is Critical for Tau Neurotoxicity in Drosophila. J. Neurosci. Res. 2007, 85(6), 1271–1278. DOI: 10.1002/jnr.21232.
  • Blard, O.; Feuillette, S.; Bou, J.; Chaumette, B.; Frébourg, T.; Campion, D.; Lecourtois, M. Cytoskeleton Proteins are Modulators of Mutant Tau-Induced Neurodegeneration in Drosophila. Hum. Mol. Genet. 2007, 16(5), 555–566. DOI: 10.1093/hmg/ddm011.
  • Bilkei-Gorzo, A. Genetic Mouse Models of Brain Ageing and Alzheimer’s Disease. Pharmacol. Ther. 2014, 142(2), 244–257. DOI: 10.1016/j.pharmthera.2013.12.009.
  • Takahashi, R. H.; Nagao, T.; Gouras, G. K. Plaque Formation and the Intraneuronal Accumulation of β‐Amyloid in Alzheimer’s Disease. Pathol. Int. 2017, 67, 185–193. DOI: 10.1111/pin.12520.
  • Soldano, A.; Hassan, B. A. Beyond Pathology: APP, Brain Development and Alzheimer’s Disease. Curr. Opin. Neurobiol. 2014, 27, 61–67. DOI: 10.1016/j.conb.2014.02.003.
  • Ryu, J.; Yu, H.-N.; Cho, H.; Kim, H.-S.; Baik, T.-K.; Lee, S.-J.; Woo, R.-S. Neuregulin-1 Exerts Protective Effects Against Neurotoxicities Induced by C-Terminal Fragments of APP via ErbB4 Receptor. J. Pharmacol. Sci. 2012, 119(1), 73–81. DOI: 10.1254/jphs.12057FP.
  • Barthelson, K.; Newman, M.; Lardelli, M. Sorting Out the Role of the Sortilin-Related Receptor 1 in Alzheimer’s Disease. J. Alzheimers Dis. Rep. 2020, 4, 123–140. DOI: 10.3233/ADR-200177.
  • Nguyen, T. V.; Galvan, V.; Huang, W.; Banwait, S.; Tang, H.; Zhang, J.; Bredesen, D. E. Signal Transduction in Alzheimer Disease: P21‐Activated Kinase Signaling Requires C‐Terminal Cleavage of APP at Asp664. J. Neurochem. 2008, 104, 1065–1080. DOI: 10.1111/j.1471-4159.2007.05031.x.
  • Muresan, V.; Varvel, N. H.; Lamb, B. T.; Muresan, Z. The Cleavage Products of Amyloid-β Precursor Protein are Sorted to Distinct Carrier Vesicles That are Independently Transported within Neurites. J. Neurosci. 2009, 29, 3565–3578. DOI: 10.1523/JNEUROSCI.2558-08.2009.
  • Chakravarthy, B.; Gaudet, C.; Ménard, M.; Atkinson, T.; Brown, L.; LaFerla, F. M.; Armato, U.; Whitfield, J. Amyloid-β Peptides Stimulate the Expression of the p75 NTR Neurotrophin Receptor in SHSY5Y Human Neuroblastoma Cells and AD Transgenic Mice. J. Alzheimer’s Dis. 2010, 19, 915–925. DOI: 10.3233/JAD-2010-1288.
  • Hensley, K.; Venkova, K.; Christov, A.; Gunning, W.; Park, J. Collapsin Response Mediator Protein-2: An Emerging Pathologic Feature and Therapeutic Target for Neurodisease Indications. Mol. Neurobiol. 2011, 43(3), 180–191. DOI: 10.1007/s12035-011-8166-4.
  • Heneka, M. T.; Carson, M. J.; El Khoury, J.; Landreth, G. E.; Brosseron, F.; Feinstein, D. L.; Jacobs, A. H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R. M. Neuroinflammation in Alzheimer’s Disease. Lancet. Neurol. 2015, 14, 388–405. DOI: 10.1016/S1474-4422(15)70016-5.
  • Su, L.-J.; Zhang, J.-H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.-Y. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxid. Med. Cell Longev. 2019, 2019, 1–13. DOI: 10.1155/2019/5080843.
  • Busche, M. A.; Hyman, B. T. Synergy Between Amyloid-β and Tau in Alzheimer’s Disease. Nat. Neurosci. 2020, 23(10), 1183–1193. DOI: 10.1038/s41593-020-0687-6.
  • Muresan, Z.; Muresan, V. Neuritic Deposits of Amyloid-β Peptide in a Subpopulation of Central Nervous System-Derived Neuronal Cells. Mol. Cell. Biol. 2006, 26, 4982–4997. DOI: 10.1128/MCB.00371-06.
  • Kanaan, N. M.; Morfini, G.; Pigino, G.; LaPointe, N. E.; Andreadis, A.; Song, Y.; Leitman, E.; Binder, L. I.; Brady, S. T. Phosphorylation in the Amino Terminus of Tau Prevents Inhibition of Anterograde Axonal Transport. Neurobiol. Aging. 2012, 33, 826–e15. DOI: 10.1016/j.neurobiolaging.2011.06.006.
  • Kumar, S.; Walter, J. Phosphorylation of Amyloid Beta (Aβ) Peptides–A Trigger for Formation of Toxic Aggregates in Alzheimer’s Disease. Aging (Albany N.Y). 2011, 3, 803. DOI: 10.18632/aging.100362.
  • Morris, G. P.; Clark, I. A.; Vissel, B. Questions Concerning the Role of Amyloid-β in the Definition, Aetiology and Diagnosis of Alzheimer’s Disease. Acta. Neuropathol. 2018, 136(5), 663–689. DOI: 10.1007/s00401-018-1918-8.
  • Devanand, D. P.; Schupf, N.; Stern, Y.; Parsey, R.; Pelton, G. H.; Mehta, P.; Mayeux, R. Plasma Aβ and PET PiB Binding are Inversely Related in Mild Cognitive Impairment. Neurology. 2011, 77, 125–131. DOI: 10.1212/WNL.0b013e318224afb7.
  • Um, J. W.; Nygaard, H. B.; Heiss, J. K.; Kostylev, M. A.; Stagi, M.; Vortmeyer, A.; Wisniewski, T.; Gunther, E. C.; Strittmatter, S. M. Alzheimer Amyloid-β Oligomer Bound to Postsynaptic Prion Protein Activates Fyn to Impair Neurons. Nat. Neurosci. 2012, 15(9), 1227–1235. DOI: 10.1038/nn.3178.
  • Grundman, M.; Petersen, R. C.; Ferris, S. H.; Thomas, R. G.; Aisen, P. S.; Bennett, D. A.; Foster, N. L.; Jack, C. R., Jr; Galasko, D. R.; Doody, R. Mild Cognitive Impairment Can Be Distinguished from Alzheimer Disease and Normal Aging for Clinical Trials. Arch. Neurol. 2004, 61, 59–66. DOI: 10.1001/archneur.61.1.59.
  • Arnsten, A. F. T.; Datta, D.; Preuss, T. M. Studies of Aging Nonhuman Primates Illuminate the Etiology of Early‐Stage Alzheimer’s‐Like Neuropathology: An Evolutionary Perspective. Am. J. Primatol. 2021, 83(11), e23254. DOI: 10.1002/ajp.23254.
  • Nussbaum, L.; Hogea, L. M.; Calina, D.; Andreescu, N.; Gradinaru, R.; Stefanescu, R.; Puiu, M. Modern Treatment Approaches in Psychoses. Pharmacogenetic, Neuroimagistic and Clinical Implications. Farmacia. 2017, 65, 75–81.
  • Zucchella, C.; Sinforiani, E.; Tamburin, S.; Federico, A.; Mantovani, E.; Bernini, S.; Casale, R.; Bartolo, M. The Multidisciplinary Approach to Alzheimer’s Disease and Dementia. A Narrative Review of Non-Pharmacological Treatment. Front. Neurol. 2018, 9, 1058. DOI: 10.3389/fneur.2018.01058.
  • Calina, D.; Buga, A. M.; Mitroi, M.; Buha, A.; Caruntu, C.; Scheau, C.; Bouyahya, A.; El Omari, N.; El Menyiy, N.; Docea, A. O. The Treatment of Cognitive, Behavioural and Motor Impairments from Brain Injury and Neurodegenerative Diseases Through Cannabinoid System Modulation—Evidence from In Vivo Studies. J. Clin. Med. 2020a, 9, 2395. DOI: 10.3390/jcm9082395.
  • Sharifi-Rad, M.; Lankatillake, C.; Dias, D. A.; Docea, A. O.; Mahomoodally, M. F.; Lobine, D.; Chazot, P. L.; Kurt, B.; Boyunegmez Tumer, T.; Catarina Moreira, A. Impact of Natural Compounds on Neurodegenerative Disorders: From Preclinical to Pharmacotherapeutics. J. Clin. Med. 2020, 9(4), 1061. DOI: 10.3390/jcm9041061.
  • Atri, A. The Alzheimer’s Disease Clinical Spectrum: Diagnosis and Management. Med. Clin. North America. 2019, 103(2), 263–293. DOI: 10.1016/j.mcna.2018.10.009.
  • Howard, R.; Liu, K. Y. Questions EMERGE as Biogen Claims Aducanumab Turnaround. Nat. Rev. Neurol. 2020, 16(2), 63–64. DOI: 10.1038/s41582-019-0295-9.
  • Yiannopoulou, K. G.; Papageorgiou, S. G. Current and Future Treatments in Alzheimer Disease: An Update. J. Cent. Nerv. Syst. Dis. 2020, 12, 1179573520907397. DOI: 10.1177/1179573520907397.
  • Finn, L. A. Current Medications for the Treatment of Alzheimer’s Disease: Acetylcholinesterase Inhibitors and NMDA Receptor Antagonist, in Drug Discovery Approaches for the Treatment of Neurodegenerative Disorders; Elsevier, 2017; pp. 49–58.
  • Tricco, A. C.; Ashoor, H. M.; Soobiah, C.; Rios, P.; Veroniki, A. A.; Hamid, J. S.; Ivory, J. D.; Khan, P. A.; Yazdi, F.; Ghassemi, M. Comparative Effectiveness and Safety of Cognitive Enhancers for Treating Alzheimer’s Disease: Systematic Review and Network Metaanalysis. J. Am. Geriatr. Soc. 2018, 66, 170–178. DOI: 10.1111/jgs.15069.
  • Wang, R.; Reddy, P. H. Role of Glutamate and NMDA Receptors in Alzheimer’s Disease. J. Alzheimer’s Dis. 2017, 57, 1041–1048. DOI: 10.3233/JAD-160763.
  • Korábečný, J.; Nepovimova, E.; Cikankova, T.; Špilovská, K.; Vašková, L.; Mezeiova, E.; Kuča, K.; Hroudova, J. Newly Developed Drugs for Alzheimer’s Disease in Relation to Energy Metabolism, Cholinergic and Monoaminergic Neurotransmission. Neuroscience. 2018, 370, 191–206. DOI: 10.1016/j.neuroscience.2017.06.034.
  • Islam, M. S.; Quispe, C.; Hossain, R.; Islam, M. T.; Al-Harrasi, A.; Al-Rawahi, A.; Martorell, M.; Mamurova, A.; Seilkhan, A.; Altybaeva, N. Neuropharmacological Effects of Quercetin: A Literature-Based Review. Front. Pharmacol. 2021, 12, 665031. DOI: 10.3389/fphar.2021.665031.
  • Tsoukalas, D.; Zlatian, O.; Mitroi, M.; Renieri, E.; Tsatsakis, A.; Izotov, B. N.; Burada, F.; Sosoi, S.; Burada, E.; Buga, A. M. A Novel Nutraceutical Formulation Can Improve Motor Activity and Decrease the Stress Level in a Murine Model of Middle-Age Animals. J. Clin. Med. 2021b, 10(4), 624. DOI: 10.3390/jcm10040624.
  • Aronson, J. K. Defining ‘Nutraceuticals’: Neither Nutritious nor Pharmaceutical. Br.J. Clin. Pharmacol. 2017, 83(1), 8–19. DOI: 10.1111/bcp.12935.
  • Santini, A.; Cammarata, S. M.; Capone, G.; Ianaro, A.; Tenore, G. C.; Pani, L.; Novellino, E. Nutraceuticals: Opening the Debate for a Regulatory Framework. Br.J. Clin. Pharmacol. 2018, 84(4), 659–672. DOI: 10.1111/bcp.13496.
  • Ayaz, M.; Ullah, F.; Sadiq, A.; Kim, M. O.; Ali, T. Natural Products-Based Drugs: Potential Therapeutics Against Alzheimer’s Disease and Other Neurological Disorders; Frontiers Media SA, 2019a. DOI:10.3389/978-2-88963-348-7.
  • Cassidy, L.; Fernandez, F.; Johnson, J. B.; Naiker, M.; Owoola, A. G.; Broszczak, D. A. Oxidative Stress in Alzheimer’s Disease: A Review on Emergent Natural Polyphenolic Therapeutics. Complement Ther. Med. 2020, 49, 102294. DOI: 10.1016/j.ctim.2019.102294.
  • Gustavsson, J.; Cederberg, C.; Sonesson, U.; Van Otterdijk, R.; Meybeck, A. Global food losses and food waste: Extent causes and prevention. In Extent of food losses and waste. Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2011; pp 4–10.
  • Sharifi-Rad, J.; Herrera-Bravo, J.; Kamiloglu, S.; Petroni, K.; Mishra, A. P.; Monserrat-Mesquida, M.; Sureda, A.; Martorell, M.; Aidarbekovna, D. S.; Yessimsiitova, Z. Recent Advances in the Therapeutic Potential of Emodin for Human Health. Biomed. Pharmacother. 2022a, 154, 113555. DOI: 10.1016/j.biopha.2022.113555.
  • Gul, K.; Singh, A. K.; Jabeen, R. Nutraceuticals and Functional Foods: The Foods for the Future World. Crit. Rev. Food Sci. Nutr. 2016, 56(16), 2617–2627. DOI: 10.1080/10408398.2014.903384.
  • Kitic, D.; Miladinovic, B.; Randjelovic, M.; Szopa, A.; Sharifi-Rad, J.; Calina, D.; Seidel, V. Anticancer Potential and Other Pharmacological Properties of Prunus armeniaca L.: An Updated Overview. Plants. 2022, 11(14), 1885. DOI: 10.3390/plants11141885.
  • Taroncher, M.; Vila-Donat, P.; Tolosa, J.; Ruiz, M. J.; Rodríguez-Carrasco, Y. Biological Activity and Toxicity of Plant Nutraceuticals: An Overview. Curr. Opin. Food Sci. 2021, 42, 113–118. DOI: 10.1016/j.cofs.2021.05.008.
  • Almanza, A.; Carlesso, A.; Chintha, C.; Creedican, S.; Doultsinos, D.; Leuzzi, B.; Luís, A.; McCarthy, N.; Montibeller, L.; More, S. Endoplasmic Reticulum Stress Signalling–From Basic Mechanisms to Clinical Applications. FEBS J. 2019, 286(2), 241–278. DOI: 10.1111/febs.14608.
  • Kim, G. H.; Kim, J. E.; Rhie, S. J.; Yoon, S. The Role of Oxidative Stress in Neurodegenerative Diseases. Exp. Neurobiol. 2015, 24(4), 325. DOI: 10.5607/en.2015.24.4.325.
  • Reyes-Fermín, L. M.; Aparicio-Trejo, O. E.; Avila-Rojas, S. H.; Gómez-Sierra, T.; Martínez-Klimova, E.; Pedraza-Chaverri, J. Natural antioxidants’ Effects on Endoplasmic Reticulum Stress-Related Diseases. Food Chem. Toxicol. 2020, 138, 111229. DOI: 10.1016/j.fct.2020.111229.
  • Chen, X.; Drew, J.; Berney, W.; Lei, W. Neuroprotective Natural Products for Alzheimer’s Disease. Cells. 2021, 10(6), 1309. DOI: 10.3390/cells10061309.
  • Tsoukalas, D.; Buga, A. M.; Docea, A. O.; Sarandi, E.; Mitrut, R.; Renieri, E.; Spandidos, D. A.; Rogoveanu, I.; Cercelaru, L.; Niculescu, M. Reversal of Brain Aging by Targeting Telomerase: A Nutraceutical Approach. Int. J. Mol. Med. 2021a, 48(5), 1–11. DOI: 10.3892/ijmm.2021.5032.
  • Venkatesan, R.; Ji, E.; Kim, S. Y. Phytochemicals That Regulate Neurodegenerative Disease by Targeting Neurotrophins: A Comprehensive Review. Biomed Res. Int. 2015, 2015, 1–22. DOI: 10.1155/2015/814068.
  • Tsoukalas, D.; Fragkiadaki, P.; Docea, A. O.; Alegakis, A. K.; Sarandi, E.; Thanasoula, M.; Spandidos, D. A.; Tsatsakis, A.; Razgonova, M. P.; Calina, D. Discovery of Potent Telomerase Activators: Unfolding New Therapeutic and Anti-Aging Perspectives. Mol. Med. Rep. 2019, 20, 3701–3708. DOI: 10.3892/mmr.2019.10614.
  • Calina, D.; Buga, A. M.; Mitroi, M.; Buha, A.; Caruntu, C.; Scheau, C.; Bouyahya, A.; El Omari, N.; El Menyiy, N.; Docea, A. O. The Treatment of Cognitive, Behavioural and Motor Impairments from Brain Injury and Neurodegenerative Diseases Through Cannabinoid System Modulation—Evidence from In Vivo Studies. J. Clin. Med. 2020b, 9, 2395. DOI: 10.3390/jcm9082395.
  • Kwan, P.; Konno, H.; Chan, K. Y.; Baum, L. Rationale for the Development of an Alzheimer’s Disease Vaccine. Hum. Vaccin. Immunother. 2020, 16(3), 645–653. DOI: 10.1080/21645515.2019.1665453.
  • Novak, P.; Schmidt, R.; Kontsekova, E.; Kovacech, B.; Smolek, T.; Katina, S.; Fialova, L.; Prcina, M.; Parrak, V.; Dal-Bianco, P. FUNDAMANT: An Interventional 72-Week Phase 1 Follow-Up Study of AADvac1, an Active Immunotherapy Against Tau Protein Pathology in Alzheimer’s Disease. Alzheimers Res. Ther. 2018, 10, 1–16. DOI: 10.1186/s13195-018-0436-1.
  • Wang, C. Y.; Wang, P.-N.; Chiu, M.-J.; Finstad, C. L.; Lin, F.; Lynn, S.; Tai, Y.-H.; De Fang, X.; Zhao, K.; Hung, C.-H. UB-311, a Novel UBITh® Amyloid β Peptide Vaccine for Mild Alzheimer’s Disease. Alzheimer’s & Dementia: Transl. Res. Clin. Interventions. 2017a, 3, 262–272. DOI: 10.1016/j.trci.2017.03.005.
  • Molina, E. P.; Pesini, P.; Sarasa‐SanJose, M.; Marcos, I.; Lacosta, A. M.; Allué, J. A.; Fandos, N.; Sarasa, M.; Boada, M.; Group, A. P. S. Safety, Tolerability and Immunogenicity of an Active Anti‐Aβ40 Vaccine (ABvac40) in Patients with Amnestic Mild Cognitive Impairment (A‐MCI) or Very Mild Alzheimer’s Disease (VM‐AD): A Randomized, Double‐Blind, Placebo‐Controlled, Phase II Trial: Human/Human Trials: Anti‐Amyloid. Alzheimer’s & Dementia. 2020, 16, e045720.
  • Rafii, M. S.; Sol, O.; Mobley, W. C.; Delpretti, S.; Skotko, B. G.; Burke, A. D.; Sabbagh, M. N.; Yuan, S. H.; Rissman, R. A.; Pulsifer, M. Safety, Tolerability, and Immunogenicity of the ACI-24 Vaccine in Adults with Down Syndrome: A Phase 1b Randomized Clinical Trial. JAMA Neurol. 2022, 79(6), 565–574. DOI: 10.1001/jamaneurol.2022.0983.
  • Koh, S.-H.; Kwon, H. S.; Choi, S. H.; Jeong, J. H.; Na, H. R.; Lee, C. N.; Yang, Y.; Lee, A. Y.; Lee, J.-H.; Park, K. W. Efficacy and Safety of GV1001 in Patients with Moderate-To-Severe Alzheimer’s Disease Already Receiving Donepezil: A Phase 2 Randomized, Double-Blind, Placebo-Controlled, Multicenter Clinical Trial. Alzheimers Res. Ther. 2021, 13, 1–11. DOI: 10.1186/s13195-021-00803-w.
  • Dow, C. T.; Greenblatt, C. L.; Chan, E. D.; Dow, J. F. Evaluation of BCG Vaccination and Plasma Amyloid: A Prospective, Pilot Study with Implications for Alzheimer’s Disease. Microorganisms. 2022, 10(2), 424. DOI: 10.3390/microorganisms10020424.
  • Cacabelos, R. How Plausible is an Alzheimer’s Disease Vaccine? Expert Opin. Drug Discov. 2020, 15(1), 1–6. DOI: 10.1080/17460441.2019.1667329.
  • Farooqui, A. A. Therapeutic Potentials of Curcumin for Alzheimer Disease; Springer International Publishing, 2016. DOI:10.1007/978-3-319-15889-1.
  • Libro, R.; Giacoppo, S.; Soundara Rajan, T.; Bramanti, P.; Mazzon, E. Natural Phytochemicals in the Treatment and Prevention of Dementia: An Overview. Molecules. 2016, 21(4), 518. DOI: 10.3390/molecules21040518.
  • Piccialli, I.; Tedeschi, V.; Caputo, L.; D’Errico, S.; Ciccone, R.; De, F. V.; Secondo, A.; Pannaccione, A. Exploring the Therapeutic Potential of Phytochemicals in Alzheimer’s Disease: Focus on Polyphenols and Monoterpenes. Front. Pharmacol. 2022, 13. DOI: 10.3389/fphar.2022.876614.
  • Cioanca, O.; Hritcu, L.; Mihasan, M.; Hancianu, M. Cognitive-Enhancing and Antioxidant Activities of Inhaled Coriander Volatile Oil in Amyloid β (1–42) Rat Model of Alzheimer’s Disease. Physiol. Behav. 2013, 120, 193–202. DOI: 10.1016/j.physbeh.2013.08.006.
  • Karakaya, S.; Koca, M.; Yılmaz, S. V.; Yıldırım, K.; Pınar, N. M.; Demirci, B.; Brestic, M.; Sytar, O. Molecular Docking Studies of Coumarins Isolated from Extracts and Essential Oils of Zosima Absinthifolia Link as Potential Inhibitors for Alzheimer’s Disease. Molecules. 2019, 24, 722. DOI: 10.3390/molecules24040722.
  • Arruda, M.; Viana, H.; Rainha, N.; Neng, N. R.; Rosa, J. S.; Nogueira, J. M. F.; Barreto, M. D. C. Anti-Acetylcholinesterase and Antioxidant Activity of Essential Oils from Hedychium Gardnerianum Sheppard Ex Ker-Gawl. Molecules. 2012, 17(3), 3082–3092. DOI: 10.3390/molecules17033082.
  • Ayaz, M.; Junaid, M.; Ullah, F.; Sadiq, A.; Khan, M. A.; Ahmad, W.; Shah, M. R.; Imran, M.; Ahmad, S. Comparative Chemical Profiling, Cholinesterase Inhibitions and Anti-Radicals Properties of Essential Oils from Polygonum hydropiper L: A Preliminary Anti-Alzheimer’s Study. Lipids Health Dis. 2015, 14(1), 1–12. DOI: 10.1186/s12944-015-0145-8.
  • Hancianu, M.; Cioanca, O.; Mihasan, M.; Hritcu, L. Neuroprotective Effects of Inhaled Lavender Oil on Scopolamine-Induced Dementia via Anti-Oxidative Activities in Rats. Phytomedicine. 2013, 20(5), 446–452. DOI: 10.1016/j.phymed.2012.12.005.
  • Baum, L.; Lam, C. W. K.; Cheung, S.-K.-K.; Kwok, T.; Lui, V.; Tsoh, J.; Lam, L.; Leung, V.; Hui, E.; Ng, C. Six-Month Randomized, Placebo-Controlled, Double-Blind, Pilot Clinical Trial of Curcumin in Patients with Alzheimer Disease. J. Clin. Psychopharmacol. 2008, 28, 110–113. DOI: 10.1097/jcp.0b013e318160862c.
  • Turner, R. S.; Thomas, R. G.; Craft, S.; Van Dyck, C. H.; Mintzer, J.; Reynolds, B. A.; Brewer, J. B.; Rissman, R. A.; Raman, R.; Aisen, P. S. A Randomized, Double-Blind, Placebo-Controlled Trial of Resveratrol for Alzheimer Disease. Neurology. 2015, 85, 1383–1391. DOI: 10.1212/WNL.0000000000002035.
  • Kamal, Z.; Ullah, F.; Ayaz, M.; Sadiq, A.; Ahmad, S.; Zeb, A.; Hussain, A.; Imran, M. Anticholinesterse and Antioxidant Investigations of Crude Extracts, Subsequent Fractions, Saponins and Flavonoids of Atriplex Laciniata L.: Potential Effectiveness in Alzheimer’s and Other Neurological Disorders. Biol. Res. 2015, 48(1), 1–11. DOI: 10.1186/s40659-015-0011-1.
  • Chen, Z.; Mao, X.; Liu, A.; Gao, X.; Chen, X.; Ye, M.; Ye, J.; Liu, P.; Xu, S.; Liu, J. Osthole, a Natural Coumarin Improves Cognitive Impairments and BBB Dysfunction After Transient Global Brain Ischemia in C57 BL/6J Mice: Involvement of Nrf2 Pathway. Neurochem. Res. 2015, 40(1), 186–194. DOI: 10.1007/s11064-014-1483-z.
  • Kaur, N.; Dhiman, M.; Perez‐Polo, J. R.; Mantha, A. K. Ginkgolide B Revamps Neuroprotective Role of Apurinic/Apyrimidinic Endonuclease 1 and Mitochondrial Oxidative Phosphorylation Against Aβ25–35‐induced Neurotoxicity in Human Neuroblastoma Cells. J. Neurosci. Res. 2015, 93, 938–947. DOI: 10.1002/jnr.23565.
  • Khan, H.; Ullah, H.; Aschner, M.; Cheang, W. S.; Akkol, E. K. Neuroprotective Effects of Quercetin in Alzheimer’s Disease. Biomolecules. 2019, 10(1), 59. DOI: 10.3390/biom10010059.
  • Kong, Z.-H.; Chen, X.; Hua, H.-P.; Liang, L.; Liu, L.-J. The Oral Pretreatment of Glycyrrhizin Prevents Surgery-Induced Cognitive Impairment in Aged Mice by Reducing Neuroinflammation and Alzheimer’s-Related Pathology via HMGB1 Inhibition. J. Mol. Neurosci. 2017, 63, 385–395. DOI: 10.1007/s12031-017-0989-7.
  • Geiser, R. J.; Chastain, S. E.; Moss, M. A. Regulation of Bace1 mRNA Expression in Alzheimer’s Disease by Green Tea Catechins and Black Tea Theaflavins. Biophys. J. 2017, 112(3), 362a. DOI: 10.1016/j.bpj.2016.11.1965.
  • Videira, R.; Castanheira, P.; Graos, M.; Resende, R.; Salgueiro, L.; Faro, C.; Cavaleiro, C. Dose-Dependent Inhibition of BACE-1 by the Monoterpenoid 2, 3, 4, 4-Tetramethyl-5-Methylenecyclopent-2-Enone in Cellular and Mouse Models of Alzheimer’s Disease. J. Nat. Prod. 2014, 77(6), 1275–1279. DOI: 10.1021/np400903w.
  • Pérez-Severiano, F.; Salvatierra-Sánchez, R.; Rodrıguez-Pérez, M.; Cuevas-Martınez, E. Y.; Guevara, J.; Limón, D.; Maldonado, P. D.; Medina-Campos, O. N.; Pedraza-Chaverrı, J.; Santamarıa, A. S-Allylcysteine Prevents Amyloid-β Peptide-Induced Oxidative Stress in Rat Hippocampus and Ameliorates Learning Deficits. Eur. J. Pharmacol. 2004, 489, 197–202. DOI: 10.1016/j.ejphar.2004.03.001.
  • Amagase, H.; Petesch, B. L.; Matsuura, H.; Kasuga, S.; Itakura, Y. Intake of Garlic and Its Bioactive Components. J. Nutr. 2001, 131(3), 955S–962S. DOI: 10.1093/jn/131.3.955S.
  • Beňová, B.; Adam, M.; Pavlíková, P.; Fischer, J. Supercritical Fluid Extraction of Piceid, Resveratrol and Emodin from Japanese Knotweed. J. Supercrit. Fluids. 2010, 51(3), 325–330. DOI: 10.1016/j.supflu.2009.10.009.
  • Ko, M. J.; Cheigh, C. I.; Cho, S. W.; Chung, M. S. Subcritical Water Extraction of Flavonol Quercetin from Onion Skin. J. Food Eng. 2011, 102(4), 327–333. DOI: 10.1016/j.jfoodeng.2010.09.008.
  • Lichtblau, D.; Berger, J. M.; Nakanishi, K. Efficient Extraction of Ginkgolides and Bilobalide from Ginkgo Biloba Leaves. J. Nat. Prod. 2002, 65(10), 1501–1504. DOI: 10.1021/np0201974.
  • Lončar, M.; Jakovljević, M.; Šubarić, D.; Pavlić, M.; Buzjak Služek, V.; Cindrić, I.; Molnar, M. Coumarins in Food and Methods of Their Determination. Foods. 2020, 9(5), 645. DOI: 10.3390/foods9050645.
  • Perva-Uzunalić, A.; Škerget, M.; Knez, Ž.; Weinreich, B.; Otto, F.; Grüner, S. Extraction of Active Ingredients from Green Tea (Camellia Sinensis): Extraction Efficiency of Major Catechins and Caffeine. Food Chem. 2006, 96(4), 597–605. DOI: 10.1016/j.foodchem.2005.03.015.
  • Priyadarsini, K. I. The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules. 2014, 19(12), 20091–20112. DOI: 10.3390/molecules191220091.
  • Taarji, N.; Bouhoute, M.; Fainassi, F.; Hafidi, A.; Kobayashi, I.; Neves, M. A.; Tominaga, K.; Isoda, H.; Nakajima, M. Interfacial and Emulsifying Properties of Purified Glycyrrhizin and Non-Purified Glycyrrhizin-Rich Extracts from Liquorice Root (Glycyrrhiza Glabra). Food Chem. 2021, 337, 127949. DOI: 10.1016/j.foodchem.2020.127949.
  • Ali, E. S.; Akter, S.; Ramproshad, S.; Mondal, B.; Riaz, T. A.; Islam, M. T.; Khan, I. N.; Docea, A. O.; Calina, D.; Sharifi-Rad, J. Targeting Ras-ERK Cascade by Bioactive Natural Products for Potential Treatment of Cancer: An Updated Overview. Cancer Cell Int. 2022, 22(1), 246. DOI: 10.1186/s12935-022-02666-z.
  • Salehi, B.; Quispe, C.; Chamkhi, I.; El Omari, N.; Balahbib, A.; Sharifi-Rad, J.; Bouyahya, A.; Akram, M.; Iqbal, M.; Docea, A. O. Pharmacological Properties of Chalcones: A Review of Preclinical Including Molecular Mechanisms and Clinical Evidence. Front. Pharmacol. 2021, 11, 592654. DOI: 10.3389/fphar.2020.592654.
  • Youssif, K. A.; Haggag, E. G.; Elshamy, A. M.; Rabeh, M. A.; Gabr, N. M.; Seleem, A.; Salem, M. A.; Hussein, A. S.; Krischke, M.; Mueller, M. J., et al. Anti-Alzheimer Potential, Metabolomic Profiling and Molecular Docking of Green Synthesized Silver Nanoparticles of Lampranthus Coccineus and Malephora Lutea Aqueous Extracts. Plos One. 2019, 14(11), e0223781. DOI: 10.1371/journal.pone.0223781.
  • Suganthy, N.; Sri Ramkumar, V.; Pugazhendhi, A.; Benelli, G.; Archunan, G. Biogenic Synthesis of Gold Nanoparticles from Terminalia Arjuna Bark Extract: Assessment of Safety Aspects and Neuroprotective Potential via Antioxidant, Anticholinesterase, and Antiamyloidogenic Effects. Environ. Sci. Pollut. Res. 2018, 25(11), 10418–10433. DOI: 10.1007/s11356-017-9789-4.
  • El-Hawwary, S. S.; Abd Almaksoud, H. M.; Saber, F. R.; Elimam, H.; Sayed, A. M.; Raey, M. A. E.; Abdelmohsen, U. R. Green-Synthesized Zinc Oxide Nanoparticles, Anti-Alzheimer Potential and the Metabolic Profiling of Sabal Blackburniana Grown in Egypt Supported by Molecular Modelling. R.S.C. Adv. 2021, 11(29), 18009–18025. DOI: 10.1039/D1RA01725J.
  • Ringman, J. M.; Frautschy, S. A.; Cole, G. M.; Masterman, D. L.; Cummings, J. L. A Potential Role of the Curry Spice Curcumin in Alzheimer’s Disease. Curr. Alzheimer Res. 2005, 2, 131–136. DOI: 10.2174/1567205053585882.
  • Zheng, K.; Dai, X.; Xiao, N.; Wu, X.; Wei, Z.; Fang, W.; Zhu, Y.; Zhang, J.; Chen, X. Curcumin Ameliorates Memory Decline via Inhibiting BACE1 Expression and β-Amyloid Pathology in 5× FAD Transgenic Mice. Mol. Neurobiol. 2017, 54(3), 1967–1977. DOI: 10.1007/s12035-016-9802-9.
  • Zhang, X.; Zhang, H.; Si, L.; Li, Y. Curcumin Mediates Presenilin-1 Activity to Reduce β-Amyloid Production in a Model of Alzheimer’s Disease. Pharmacol. Rep. 2011, 63, 1101–1108. DOI: 10.1016/S1734-1140(11)70629-6.
  • Carrettiero, D. C.; Hernandez, I.; Neveu, P.; Papagiannakopoulos, T.; Kosik, K. S. The Cochaperone BAG2 Sweeps Paired Helical Filament-Insoluble Tau from the Microtubule. J. Neurosci. 2009, 29, 2151–2161. DOI: 10.1523/JNEUROSCI.4660-08.2009.
  • Patil, S. P.; Tran, N.; Geekiyanage, H.; Liu, L.; Chan, C. Curcumin-Induced Upregulation of the Anti-Tau Cochaperone BAG2 in Primary Rat Cortical Neurons. Neurosci. Lett. 2013, 554, 121–125. DOI: 10.1016/j.neulet.2013.09.008.
  • Mani, R.; Sha Sulthana, A.; Muthusamy, G.; Elangovan, N. Progress in the Development of Naturally Derived Active Metabolites‐Based Drugs: Potential Therapeutics for Alzheimer’s Disease. Biotechnol. Appl. Biochem. 2022, 69, 2713–2732. DOI: 10.1002/bab.2317.
  • Tian, B.; Liu, J. Resveratrol: A Review of Plant Sources, Synthesis, Stability, Modification and Food Application. J. Sci. Food Agric. 2020, 100(4), 1392–1404. DOI: 10.1002/jsfa.10152.
  • Rahman, M.; Akter, R.; Bhattacharya, T.; Abdel-Daim, M. M.; Alkahtani, S.; Arafah, M. W.; Al-Johani, N. S.; Alhoshani, N. M.; Alkeraishan, N.; Alhenaky, A. Resveratrol and Neuroprotection: Impact and Its Therapeutic Potential in Alzheimer’s Disease. Front. Pharmacol. 2020, 2272. DOI: 10.3389/fphar.2020.619024.
  • Wang, J.; Ho, L.; Zhao, W.; Ono, K.; Rosensweig, C.; Chen, L.; Humala, N.; Teplow, D. B.; Pasinetti, G. M. Grape-Derived Polyphenolics Prevent Aβ Oligomerization and Attenuate Cognitive Deterioration in a Mouse Model of Alzheimer’s Disease. J. Neurosci. 2008, 28, 6388–6392. DOI: 10.1523/JNEUROSCI.0364-08.2008.
  • Jeon, B. T.; Jeong, E. A.; Shin, H. J.; Lee, Y.; Lee, D. H.; Kim, H. J.; Kang, S. S.; Cho, G. J.; Choi, W. S.; Roh, G. S. Resveratrol Attenuates Obesity-Associated Peripheral and Central Inflammation and Improves Memory Deficit in Mice Fed a High-Fat Diet. Diabetes. 2012, 61(6), 1444–1454. DOI: 10.2337/db11-1498.
  • Lee, E. O.; Park, H. J.; Kang, J. L.; Kim, H.; Chong, Y. H. Resveratrol Reduces Glutamate‐Mediated Monocyte Chemotactic Protein‐1 Expression via Inhibition of Extracellular Signal‐Regulated Kinase 1/2 Pathway in Rat Hippocampal Slice Cultures. J. Neurochem. 2010, 112(6), 1477–1487. DOI: 10.1111/j.1471-4159.2009.06564.x.
  • Sarroca, S.; Gatius, A.; Rodríguez-Farré, E.; Vilchez, D.; Pallàs, M.; Griñán-Ferré, C.; Sanfeliu, C.; Corpas, R. Resveratrol Confers Neuroprotection Against High-Fat Diet in a Mouse Model of Alzheimer’s Disease via Modulation of Proteolytic Mechanisms. J. Nutr. Biochem. 2021, 89, 108569. DOI: 10.1016/j.jnutbio.2020.108569.
  • Lin, C.-H.; Lin, C.-C.; Ting, W.-J.; Pai, P.-Y.; Kuo, C.-H.; Ho, T.-J.; Kuo, W.-W.; Chang, C.-H.; Huang, C.-Y.; Lin, W.-T. Resveratrol Enhanced FOXO3 Phosphorylation via Synergetic Activation of SIRT1 and PI3K/Akt Signaling to Improve the Effects of Exercise in Elderly Rat Hearts. Age (Omaha). 2014, 36(5), 1–10. DOI: 10.1007/s11357-014-9705-5.
  • Cheng, A.; Wan, R.; Yang, J.-L.; Kamimura, N.; Son, T. G.; Ouyang, X.; Luo, Y.; Okun, E.; Mattson, M. P. Involvement of PGC-1α in the Formation and Maintenance of Neuronal Dendritic Spines. Nat. Commun. 2012, 3(1), 1250. DOI: 10.1038/ncomms2238.
  • Li, X.; Yang, S.; Wang, L.; Liu, P.; Zhao, S.; Li, H.; Jiang, Y.; Guo, Y.; Wang, X. resveratrol Inhibits Paclitaxel-Induced Neuropathic Pain by the Activation of PI3K/Akt and SIRT1/PGC1α Pathway. J. Pain Res. 2019, Volume 12, 879–890. DOI: 10.2147/JPR.S185873.
  • Wang, B.; Yang, Q.; Sun, Y.; Xing, Y.; Wang, Y.; Lu, X.; Bai, W.; Liu, X.; Zhao, Y. Resveratrol‐Enhanced Autophagic Flux Ameliorates Myocardial Oxidative Stress Injury in Diabetic Mice. J. Cell Mol. Med. 2014, 18(8), 1599–1611. DOI: 10.1111/jcmm.12312.
  • Shanbhag, S. M.; Kulkarni, H. J.; Gaitonde, B. B. Pharmacological Actions of Berberine on the Central Nervous System. Japanese J. Pharmacol. 1970, 20, 482–487. DOI: 10.1254/jjp.20.482.
  • Durairajan, S. S. K.; Liu, L.-F.; Lu, J.-H.; Chen, L.-L.; Yuan, Q.; Chung, S. K.; Huang, L.; Li, X.-S.; Huang, J.-D.; Li, M. Berberine Ameliorates β-Amyloid Pathology, Gliosis, and Cognitive Impairment in an Alzheimer’s Disease Transgenic Mouse Model. Neurobiol. Aging. 2012, 33, 2903–2919. DOI: 10.1016/j.neurobiolaging.2012.02.016.
  • Ji, H.-F.; Shen, L. Molecular Basis of Inhibitory Activities of Berberine Against Pathogenic Enzymes in Alzheimer’s Disease. Sci. World J. 2012, 2012, 1–4. DOI: 10.1100/2012/823201.
  • Cummings, J. L. Cholinesterase Inhibitors: A New Class of Psychotropic Compounds. Am. j. psychiatry. 2000, 157(1), 4–15. DOI: 10.1176/ajp.157.1.4.
  • Yu, G.; Li, Y.; Tian, Q.; Liu, R.; Wang, Q.; Wang, J.-Z.; Wang, X. Berberine Attenuates Calyculin A-Induced Cytotoxicity and Tau Hyperphosphorylation in HEK293 Cells. J. Alzheimer’s Dis. 2011, 24, 525–535. DOI: 10.3233/JAD-2011-101779.
  • de Oliveira, J. S.; Abdalla, F. H.; Dornelles, G. L.; Adefegha, S. A.; Palma, T. V.; Signor, C.; da Silva Bernardi, J.; Baldissarelli, J.; Lenz, L. S.; Magni, L. P. Berberine Protects Against Memory Impairment and Anxiogenic-Like Behavior in Rats Submitted to Sporadic Alzheimer’s-Like Dementia: Involvement of Acetylcholinesterase and Cell Death. Neurotoxicology. 2016, 57, 241–250. DOI: 10.1016/j.neuro.2016.10.008.
  • Huang, M.; Jiang, X.; Liang, Y.; Liu, Q.; Chen, S.; Guo, Y. I. Berberine Improves Cognitive Impairment by Promoting Autophagic Clearance and Inhibiting Production of β-Amyloid in APP/Tau/PS1 Mouse Model of Alzheimer’s Disease. Exp. Gerontol. 2017, 91, 25–33. DOI: 10.1016/j.exger.2017.02.004.
  • Ay, M.; Luo, J.; Langley, M.; Jin, H.; Anantharam, V.; Kanthasamy, A.; Kanthasamy, A. G. Molecular Mechanisms Underlying Protective Effects of Quercetin Against Mitochondrial Dysfunction and Progressive Dopaminergic Neurodegeneration in Cell Culture and MitoPark Transgenic Mouse Models of Parkinson’s Disease. J. Neurochem. 2017, 141, 766–782. DOI: 10.1111/jnc.14033.
  • Jiang, W.; Luo, T.; Li, S.; Zhou, Y.; Shen, X.-Y.; He, F.; Xu, J.; Wang, H.-Q.; Arai, K. Quercetin Protects Against Okadaic Acid-Induced Injury via MAPK and PI3K/Akt/GSK3β Signaling Pathways in HT22 Hippocampal Neurons. Plos One. 2016, 11(4), e0152371. DOI: 10.1371/journal.pone.0152371.
  • Qureshi, A. A.; Tan, X.; Reis, J. C.; Badr, M. Z.; Papasian, C. J.; Morrison, D. C.; Qureshi, N. Inhibition of Nitric Oxide in LPS-Stimulated Macrophages of Young and Senescent Mice by δ-Tocotrienol and Quercetin. Lipids Health Dis. 2011, 10(1), 1–22. DOI: 10.1186/1476-511X-10-239.
  • Rezai-Zadeh, K.; Arendash, G. W.; Hou, H.; Fernandez, F.; Jensen, M.; Runfeldt, M.; Shytle, R. D.; Tan, J. Green Tea Epigallocatechin-3-Gallate (EGCG) Reduces β-Amyloid Mediated Cognitive Impairment and Modulates Tau Pathology in Alzheimer Transgenic Mice. Brain. Res. 2008a, 1214, 177–187. DOI: 10.1016/j.brainres.2008.02.107.
  • Rezai-Zadeh, K.; Shytle, D.; Sun, N.; Mori, T.; Hou, H.; Jeanniton, D.; Ehrhart, J.; Townsend, K.; Zeng, J.; Morgan, D. Green Tea Epigallocatechin-3-Gallate (EGCG) Modulates Amyloid Precursor Protein Cleavage and Reduces Cerebral Amyloidosis in Alzheimer Transgenic Mice. J. Neurosci. 2005, 25, 8807–8814. DOI: 10.1523/JNEUROSCI.1521-05.2005.
  • Singh, M.; Arseneault, M.; Sanderson, T.; Murthy, V.; Ramassamy, C. Challenges for Research on Polyphenols from Foods in Alzheimer’s Disease: Bioavailability, Metabolism, and Cellular and Molecular Mechanisms. J. Agric. Food. Chem. 2008, 56(13), 4855–4873. DOI: 10.1021/jf0735073.
  • Mandel, S.; Amit, T.; Reznichenko, L.; Weinreb, O.; Youdim, M. B. H. Green Tea Catechins as Brain‐Permeable, Natural Iron Chelators‐Antioxidants for the Treatment of Neurodegenerative Disorders. Mol. Nutr Food Res. 2006, 50, 229–234. DOI: 10.1002/mnfr.200500156.
  • Chen, C.; Yu, R.; Owuor, E. D.; Tony Kong, A.-N. Activation of Antioxidant-Response Element (ARE), Mitogen-Activated Protein Kinases (MAPKs) and Caspases by Major Green Tea Polyphenol Components During Cell Survival and Death. Arch. Pharm. Res. 2000, 23, 605–612. DOI: 10.1007/BF02975249.
  • Ishige, K.; Schubert, D.; Sagara, Y. Flavonoids Protect Neuronal Cells from Oxidative Stress by Three Distinct Mechanisms. Free Radic. Biol. Med. 2001, 30(4), 433–446. DOI: 10.1016/S0891-5849(00)00498-6.
  • Levites, Y.; Amit, T.; Mandel, S.; Youdim, M. B. H. Neuroprotection and Neurorescue Against Aβ Toxicity and PKC‐Dependent Release of Non‐Amyloidogenic Soluble Precursor Protein by Green Tea Polyphenol (‐)‐Epigallocatechin‐3‐Gallate. FASEB. J. 2003, 17, 1–23. DOI: 10.1096/fj.02-0881fje.
  • Bastianetto, S.; Yao, Z.; Papadopoulos, V.; Quirion, R. Neuroprotective Effects of Green and Black Teas and Their Catechin Gallate Esters Against β‐Amyloid‐Induced Toxicity. European J. Neurosci. 2006, 23(1), 55–64. DOI: 10.1111/j.1460-9568.2005.04532.x.
  • Obregon, D. F.; Rezai-Zadeh, K.; Bai, Y.; Sun, N.; Hou, H.; Ehrhart, J.; Zeng, J.; Mori, T.; Arendash, G. W.; Shytle, D. ADAM10 Activation is Required for Green Tea (–)-epigallocatechin-3-gallate-induced α-Secretase Cleavage of Amyloid Precursor Protein. J. Biol. Chem. 2006, 281(24), 16419–16427. DOI: 10.1074/jbc.M600617200.
  • Jeon, S.-Y.; Bae, K.; Seong, Y.-H.; Song, K.-S. Green Tea Catechins as a BACE1 (β-Secretase) Inhibitor. Bioorg. Med. Chem. Lett. 2003, 13(22), 3905–3908. DOI: 10.1016/j.bmcl.2003.09.018.
  • Ono, K.; Hasegawa, K.; Naiki, H.; Yamada, M. Curcumin Has Potent Anti‐Amyloidogenic Effects for Alzheimer’s β‐Amyloid Fibrils In Vitro. J. Neurosci. Res. 2004, 75, 742–750. DOI: 10.1002/jnr.20025.
  • Ehrnhoefer, D. E.; Bieschke, J.; Boeddrich, A.; Herbst, M.; Masino, L.; Lurz, R.; Engemann, S.; Pastore, A.; Wanker, E. E. EGCG Redirects Amyloidogenic Polypeptides into Unstructured, Off-Pathway Oligomers. Nat. Struct. Mol. Biol. 2008, 15(6), 558–566. DOI: 10.1038/nsmb.1437.
  • Zhao, B.; Li, X.; He, R.; Cheng, S.; Wenjuan, X. Scavenging Effect of Extracts of Green Tea and Natural Antioxidants on Active Oxygen Radicals. Cell Biophys. 1989, 14, 175–185. DOI: 10.1007/BF02797132.
  • Choi, Y.-T.; Jung, C.-H.; Lee, S.-R.; Bae, J.-H.; Baek, W.-K.; Suh, M.-H.; Park, J.; Park, C.-W.; Suh, S.-I. The Green Tea Polyphenol (−)-Epigallocatechin Gallate Attenuates β-Amyloid-Induced Neurotoxicity in Cultured Hippocampal Neurons. Life. sci. 2001, 70(5), 603–614. DOI: 10.1016/S0024-3205(01)01438-2.
  • Haque, A. M.; Hashimoto, M.; Katakura, M.; Hara, Y.; Shido, O. Green Tea Catechins Prevent Cognitive Deficits Caused by Aβ1–40 in Rats. J. Nutr Biochem. 2008, 19(9), 619–626. DOI: 10.1016/j.jnutbio.2007.08.008.
  • Kim, S.-J.; Jeong, H.-J.; Lee, K.-M.; Myung, N.-Y.; An, N.-H.; Yang, W. M.; Park, S. K.; Lee, H.-J.; Hong, S.-H.; Kim, H.-M. Epigallocatechin-3-Gallate Suppresses NF-Κb Activation and Phosphorylation of p38 MAPK and JNK in Human Astrocytoma U373MG Cells. J. Nutr Biochem. 2007, 18(9), 587–596. DOI: 10.1016/j.jnutbio.2006.11.001.
  • Ahmed, S.; Rahman, A.; Hasnain, A.; Lalonde, M.; Goldberg, V. M.; Haqqi, T. M. Green Tea Polyphenol Epigallocatechin-3-Gallate Inhibits the IL-1β-Induced Activity and Expression of Cyclooxygenase-2 and Nitric Oxide Synthase-2 in Human Chondrocytes. Free Radic. Biol. Med. 2002, 33(8), 1097–1105. DOI: 10.1016/S0891-5849(02)01004-3.
  • Han, M.-K. Epigallocatechin Gallate, a Constituent of Green Tea, Suppresses Cytokine-Induced Pancreatic β-Cell Damage. Exp. Mol. Med. 2003, 35(2), 136–139. DOI: 10.1038/emm.2003.19.
  • Rezai-Zadeh, K.; Arendash, G. W.; Hou, H.; Fernandez, F.; Jensen, M.; Runfeldt, M.; Shytle, R. D.; Tan, J. Green Tea Epigallocatechin-3-Gallate (EGCG) Reduces β-Amyloid Mediated Cognitive Impairment and Modulates Tau Pathology in Alzheimer Transgenic Mice. Brain. Res. 2008b, 1214, 177–187. DOI: 10.1016/j.brainres.2008.02.107.
  • Palermo, C. M.; Westlake, C. A.; Gasiewicz, T. A. Epigallocatechin Gallate Inhibits Aryl Hydrocarbon Receptor Gene Transcription Through an Indirect Mechanism Involving Binding to a 90 kDa Heat Shock Protein. Biochemistry. 2005, 44(13), 5041–5052. DOI: 10.1021/bi047433p.
  • Lee, S.-Y.; Kim, C.-Y.; Lee, J.-J.; Jung, J.-G.; Lee, S.-R. Effects of Delayed Administration of (−)-Epigallocatechin Gallate, a Green Tea Polyphenol on the Changes in Polyamine Levels and Neuronal Damage After Transient Forebrain Ischemia in Gerbils. Brain Res. Bull. 2003, 61(4), 399–406. DOI: 10.1016/S0361-9230(03)00139-4.
  • Matsuoka, Y.; Hasegawa, H.; Okuda, S.; Muraki, T.; Uruno, T.; Kubota, K. Ameliorative Effects of Tea Catechins on Active Oxygen-Related Nerve Cell Injuries. J. Pharmacol. Exp. Ther. 1995, 274, 602–608.
  • Shekarchi, M.; Hajimehdipoor, H.; Saeidnia, S.; Gohari, A. R.; Hamedani, M. P. Comparative Study of Rosmarinic Acid Content in Some Plants of Labiatae Family. Pharmacogn. Mag. 2012, 8, 37. DOI: 10.4103/0973-1296.93316.
  • Baba, S.; Osakabe, N.; Natsume, M.; Terao, J. Orally Administered Rosmarinic Acid is Present as the Conjugated And/Or Methylated Forms in Plasma, and is Degraded and Metabolized to Conjugated Forms of Caffeic Acid, Ferulic Acid and M-Coumaric Acid. Life. sci. 2004, 75(2), 165–178. DOI: 10.1016/j.lfs.2003.11.028.
  • Nakazawa, T.; Ohsawa, K. Metabolism of Rosmarinic Acid in Rats. J. Nat. Prod. 1998, 61(8), 993–996. DOI: 10.1021/np980072s.
  • Iuvone, T.; De Filippis, D.; Esposito, G.; D’Amico, A.; Izzo, A. A. The Spice Sage and Its Active Ingredient Rosmarinic Acid Protect PC12 Cells from Amyloid-β Peptide-Induced Neurotoxicity. J. Pharmacol. Exp. Ther. 2006, 317, 1143–1149. DOI: 10.1124/jpet.105.099317.
  • Airoldi, C.; Sironi, E.; Dias, C.; Marcelo, F.; Martins, A.; Rauter, A. P.; Nicotra, F.; Jimenez‐Barbero, J. Natural Compounds Against Alzheimer’s Disease: Molecular Recognition of Aβ1-42 Peptide by Salvia Sclareoides Extract and Its Major Component, Rosmarinic Acid, as Investigated by NMR. Chem.–An Asian J. 2013, 8(3), 596–602. DOI: 10.1002/asia.201201063.
  • Alkam, T.; Nitta, A.; Mizoguchi, H.; Itoh, A.; Nabeshima, T. A Natural Scavenger of Peroxynitrites, Rosmarinic Acid, Protects Against Impairment of Memory Induced by Aβ25–35. Behav. Brain Res. 2007, 180(2), 139–145. DOI: 10.1016/j.bbr.2007.03.001.
  • Bulgakov, V. P.; Inyushkina, Y. V.; Fedoreyev, S. A. Rosmarinic Acid and Its Derivatives: Biotechnology and Applications. Crit. Rev. Biotechnol. 2012, 32(3), 203–217. DOI: 10.3109/07388551.2011.596804.
  • Shukla, S.; Gupta, S. Apigenin: A Promising Molecule for Cancer Prevention. Pharm. Res. 2010, 27(6), 962–978. DOI: 10.1007/s11095-010-0089-7.
  • Hollman, P. H.; Katan, M. B. Dietary Flavonoids: Intake, Health Effects and Bioavailability. Food Chem. Toxicol. 1999, 37, 937–942. DOI: 10.1016/S0278-6915(99)00079-4.
  • Zhang, J.; Liu, D.; Huang, Y.; Gao, Y.; Qian, S. Biopharmaceutics Classification and Intestinal Absorption Study of Apigenin. Int. J. Pharm. 2012, 436(1–2), 311–317. DOI: 10.1016/j.ijpharm.2012.07.002.
  • Gradolatto, A.; Canivenc-Lavier, M.-C.; Basly, J.-P.; Siess, M.-H.; Teyssier, C. Metabolism of Apigenin by Rat Liver Phase I and Phase II Enzymes and by Isolated Perfused Rat Liver. Drug Metab. Dispos. 2004, 32(1), 58–65. DOI: 10.1124/dmd.32.1.58.
  • Zhao, L.; Hou, L.; Sun, H.; Yan, X.; Sun, X.; Li, J.; Bian, Y.; Chu, Y.; Liu, Q. Apigenin Isolated from the Medicinal Plant Elsholtzia Rugulosa Prevents β-Amyloid 25–35-induces Toxicity in Rat Cerebral Microvascular Endothelial Cells. Molecules. 2011, 16(5), 4005–4019. DOI: 10.3390/molecules16054005.
  • Liu, R.; Zhang, T.; Yang, H.; Lan, X.; Ying, J.; Du, G. The Flavonoid Apigenin Protects Brain Neurovascular Coupling Against Amyloid-β 25-35-Induced Toxicity in Mice. J. Alzheimer’s Dis. 2011b, 24(1), 85–100. DOI: 10.3233/JAD-2010-101593.
  • Zhao, Y.; Zhao, B. Oxidative Stress and the Pathogenesis of Alzheimer’s Disease. Oxid. Med. Cell Longev. 2013, 2013, 1–10. DOI: 10.1155/2013/316523.
  • López-Lázaro, M. Distribution and Biological Activities of the Flavonoid Luteolin. Mini. Rev. Med. Chem. 2009, 9(1), 31–59. DOI: 10.2174/138955709787001712.
  • Shimoi, K.; Okada, H.; Furugori, M.; Goda, T.; Takase, S.; Suzuki, M.; Hara, Y.; Yamamoto, H.; Kinae, N. Intestinal Absorption of Luteolin and Luteolin 7-O-β-Glucoside in Rats and Humans. FEBS Lett. 1998, 438(3), 220–224. DOI: 10.1016/S0014-5793(98)01304-0.
  • Cheng, H.; Hsieh, M.; Tsai, F.; Wu, C.; Chiu, C.; Lee, M.; Xu, H.; Zhao, Z.; Peng, W. Neuroprotective Effect of Luteolin on Amyloid β Protein (25–35)‐induced Toxicity in Cultured Rat Cortical Neurons. Phytotherapy Res. 2010, 24, S102–S108. DOI: 10.1002/ptr.2940.
  • Wruck, C. J.; Claussen, M.; Fuhrmann, G.; Römer, L.; Schulz, A.; Pufe, T.; Waetzig, V.; Peipp, M.; Herdegen, T.; Götz, M. E. Luteolin Protects Rat PC 12 and C6 Cells Against MPP+ Induced Toxicity via an ERK Dependent Keapl-Nrf2-ARE Pathway; Springer, 2007. DOI:10.1007/978-3-211-73574-9_9.
  • Liu, R.; Meng, F.; Zhang, L.; Liu, A.; Qin, H.; Lan, X.; Li, L.; Du, G. Luteolin Isolated from the Medicinal Plant Elsholtzia Rugulosa (Labiatae) Prevents Copper-Mediated Toxicity in β-Amyloid Precursor Protein Swedish Mutation Overexpressing SH-SY5Y Cells. Molecules. 2011a, 16(3), 2084–2096. DOI: 10.3390/molecules16032084.
  • Xu, B.; Li, X.-X.; He, G.-R.; Hu, J.-J.; Mu, X.; Tian, S.; Du, G.-H. Luteolin Promotes Long-Term Potentiation and Improves Cognitive Functions in Chronic Cerebral Hypoperfused Rats. Eur. J. Pharmacol. 2010, 627(1–3), 99–105. DOI: 10.1016/j.ejphar.2009.10.038.
  • Rasul, A.; Millimouno, F. M.; Ali Eltayb, W.; Ali, M.; Li, J.; Li, X. Pinocembrin: A Novel Natural Compound with Versatile Pharmacological and Biological Activities. Biomed Res. Int. 2013, 2013, 1–9. DOI: 10.1155/2013/379850.
  • Guo, W.-W.; Qiu, F.; Chen, X.-Q.; Ba, Y.-Y.; Wang, X.; Wu, X. In-Vivo Absorption of Pinocembrin-7-O-β-D-Glucoside in Rats and Its in-Vitro Biotransformation. Sci. Rep. 2016, 6(1), 1–8. DOI: 10.1038/srep29340.
  • Wang, Y.; Miao, Y.; Mir, A. Z.; Cheng, L.; Wang, L.; Zhao, L.; Cui, Q.; Zhao, W.; Wang, H. Inhibition of Beta-Amyloid-Induced Neurotoxicity by Pinocembrin Through Nrf2/HO-1 Pathway in SH-SY5Y Cells. J. Neurol. Sci. 2016, 368, 223–230. DOI: 10.1016/j.jns.2016.07.010.
  • Liu, R.; Wu, C.; Zhou, D.; Yang, F.; Tian, S.; Zhang, L.; Zhang, T.; Du, G. Pinocembrin Protects Against β-Amyloid-Induced Toxicity in Neurons Through Inhibiting Receptor for Advanced Glycation End Products (RAGE)-Independent Signaling Pathways and Regulating Mitochondrion-Mediated Apoptosis. BMC Med. 2012, 10(1), 1–21. DOI: 10.1186/1741-7015-10-105.
  • Liu, R.; Li, J.; Song, J.; Sun, J.; Li, Y.; Zhou, S.; Zhang, T.; Du, G. Pinocembrin Protects Human Brain Microvascular Endothelial Cells Against Fibrillar Amyloid-β1− 40 Injury by Suppressing the MAPK/NF-κ B Inflammatory Pathways. Biomed Res. Int. 2014, 2014, 1–14. DOI: 10.1155/2014/470393.
  • Shi, C.; Wu, F.; Xu, J.; Zou, J. Bilobalide Regulates Soluble Amyloid Precursor Protein Release via Phosphatidyl Inositol 3 Kinase-Dependent Pathway. Neurochem. Int. 2011, 59, 59–64. DOI: 10.1016/j.neuint.2011.03.028.
  • Tchantchou, F.; Lacor, P. N.; Cao, Z.; Lao, L.; Hou, Y.; Cui, C.; Klein, W. L.; Luo, Y. Stimulation of Neurogenesis and Synaptogenesis by Bilobalide and Quercetin via Common Final Pathway in Hippocampal Neurons. J. Alzheimer’s Dis. 2009, 18, 787–798. DOI: 10.3233/JAD-2009-1189.
  • Bastianetto, S.; Ramassamy, C.; Doré, S.; Christen, Y.; Poirier, J.; Quirion, R. The Ginkgo Biloba Extract (EGb 761) Protects Hippocampal Neurons Against Cell Death Induced by β‐Amyloid. European J. Neurosci. 2000, 12(6), 1882–1890. DOI: 10.1046/j.1460-9568.2000.00069.x.
  • Longpré, F.; Garneau, P.; Ramassamy, C. Protection by EGb 761 Against β-Amyloid-Induced Neurotoxicity: Involvement of NF-κB, SIRT1, and MAPKs Pathways and Inhibition of Amyloid Fibril Formation. Free Radic. Biol. Med. 2006, 41, 1781–1794. DOI: 10.1016/j.freeradbiomed.2006.08.015.
  • Wu, Y.; Wu, Z.; Butko, P.; Christen, Y.; Lambert, M. P.; Klein, W. L.; Link, C. D.; Luo, Y. Amyloid-β-Induced Pathological Behaviors are Suppressed by Ginkgo Biloba Extract EGb 761 and Ginkgolides in Transgenic Caenorhabditis Elegans. J. Neurosci. 2006, 26, 13102–13113. DOI: 10.1523/JNEUROSCI.3448-06.2006.
  • Zhou, L.-J.; Zhu, X.-Z. Reactive Oxygen Species-Induced Apoptosis in PC12 Cells and Protective Effect of Bilobalide. J. Pharmacol. Exp. Ther. 2000, 293, 982–988.
  • Block, E. The Chemistry of Garlic and Onions. Sci. Am. 1985, 252, 114–121. DOI: 10.1038/scientificamerican0385-114.
  • Selassie, M.; Griffin, B.; Gwebu, N.; Gwebu, E. T. Aged Garlic Extract Attenuates the Cytotoxicity of (Beta-Amyloid) on Undifferentiated PC12 Cells. Vitro Cell. Dev. Biol. 1999, 35, 369. DOI: 10.1007/s11626-999-0109-2.
  • Peng, Q.; Buz’zard, A. R.; Lau, B. H. S. Neuroprotective Effect of Garlic Compounds in Amyloid-Beta Peptide-Induced Apoptosis In Vitro. Med. Sci. Monit. 2002, 8, BR328–37.
  • Gupta, V. B.; Indi, S. S.; Rao, K. S. J. Garlic Extract Exhibits Antiamyloidogenic Activity on Amyloid‐Beta Fibrillogenesis: Relevance to Alzheimer’s Disease. Phytother. Res. 2009, 23, 111–115. DOI: 10.1002/ptr.2574.
  • Nillert, N.; Pannangrong, W.; Welbat, J. U.; Chaijaroonkhanarak, W.; Sripanidkulchai, K.; Sripanidkulchai, B. Neuroprotective Effects of Aged Garlic Extract on Cognitive Dysfunction and Neuroinflammation Induced by β-Amyloid in Rats. Nutrients. 2017, 9(1), 24. DOI: 10.3390/nu9010024.
  • Alshehri, M. M.; Quispe, C.; Herrera-Bravo, J.; Sharifi-Rad, J.; Tutuncu, S.; Aydar, E. F.; Topkaya, C.; Mertdinc, Z.; Ozcelik, B.; Aital, M. A Review of Recent Studies on the Antioxidant and Anti-Infectious Properties of Senna Plants. Oxid. Med. Cell Longev. 2022, 2022, 1–38. DOI: 10.1155/2022/6025900.
  • Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C. J.; Valko, M. Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends Pharmacol. Sci. 2017, 38(7), 592–607. DOI: 10.1016/j.tips.2017.04.005.
  • Zhang, J.; Duan, D.; Song, Z.; Liu, T.; Hou, Y.; Fang, J. Small Molecules Regulating Reactive Oxygen Species Homeostasis for Cancer Therapy. Med. Res. Rev. 2021, 41(1), 342–394. DOI: 10.1002/med.21734.
  • Sharifi-Rad, J.; Rapposelli, S.; Sestito, S.; Herrera-Bravo, J.; Arancibia-Diaz, A.; Salazar, L. A.; Yeskaliyeva, B.; Beyatli, A.; Leyva-Gómez, G.; González-Contreras, C. Multi-Target Mechanisms of Phytochemicals in Alzheimer’s Disease: Effects on Oxidative Stress, Neuroinflammation and Protein Aggregation. J. Pers. Med. 2022c, 12, 1515. DOI: 10.3390/jpm12091515.
  • Escobar, S. J. D. M.; Fong, G. M.; Winnischofer, S. M. B.; Simone, M.; Munoz, L.; Dennis, J. M.; Rocha, M. E. M.; Witting, P. K. Anti-Proliferative and Cytotoxic Activities of the Flavonoid Isoliquiritigenin in the Human Neuroblastoma Cell Line SH-SY5Y. Chem. Biol. Interact. 2019, 299, 77–87. DOI: 10.1016/j.cbi.2018.11.022.
  • Amin, R.; Quispe, C.; Docea, A. O.; Alibek, Y.; Kulbayeva, M.; Daştan, S. D.; Calina, D.; Sharifi-Rad, J. The Role of Tumour Necrosis Factor in Neuroinflammation Associated with Parkinson’s Disease and Targeted Therapies. Neurochem. Int. 2022, 158, 105376. DOI: 10.1016/j.neuint.2022.105376.
  • Taheri, Y.; Quispe, C.; Herrera-Bravo, J.; Sharifi-Rad, J.; Ezzat, S. M.; Merghany, R. M.; Shaheen, S.; Azmi, L.; Prakash Mishra, A.; Sener, B., et al. Urtica Dioica-Derived Phytochemicals for Pharmacological and Therapeutic Applications. Evid. Based Complement. Altern. Med. 2022, 2022, 1–30. DOI: 10.1155/2022/4024331.
  • Behl, C.; Moosmann, B. Oxidative Nerve Cell Death in Alzheimer's Disease and Stroke: Antioxidants as Neuroprotective Compounds. Biol. Chem. 2002, 383(3–4). DOI: 10.1515/BC.2002.053.
  • Dhyani, P.; Quispe, C.; Sharma, E.; Bahukhandi, A.; Sati, P.; Attri, D. C.; Szopa, A.; Sharifi-Rad, J.; Docea, A. O.; Mardare, I. Anticancer Potential of Alkaloids: A Key Emphasis to Colchicine, Vinblastine, Vincristine, Vindesine, Vinorelbine and Vincamine. Cancer Cell Int. 2022, 22(1), 1–20. DOI: 10.1186/s12935-022-02624-9.
  • Suganthy, N.; Devi, K. P. Protective Effect of Catechin Rich Extract of Rhizophora Mucronata Against β-Amyloid-Induced Toxicity in PC12 Cells. J. Appl. Biomed. 2016, 14(2), 137–146. DOI: 10.1016/j.jab.2015.10.003.
  • Ide, K.; Matsuoka, N.; Yamada, H.; Furushima, D.; Kawakami, K. Effects of Tea Catechins on Alzheimer’s Disease: Recent Updates and Perspectives. Molecules. 2018, 23(9), 2357. DOI: 10.3390/molecules23092357.
  • Okello, E. J.; Mather, J. Comparative Kinetics of Acetyl-And Butyryl-Cholinesterase Inhibition by Green Tea Catechins| Relevance to the Symptomatic Treatment of Alzheimer’s Disease. Nutrients. 2020, 12, 1090. DOI: 10.3390/nu12041090.
  • Ayaz, M.; Ullah, F.; Sadiq, A.; Kim, M. O.; Ali, T. Natural Products-Based Drugs: Potential Therapeutics Against Alzheimer’s Disease and Other Neurological Disorders; Frontiers Media SA, 2019b. DOI:10.3389/978-2-88963-348-7.
  • Chougle, S.; Kumar, D.; Andleeb, K.; Zehra, S.; Ahmad, A. L. İ. Treatment of Alzheimer’s Disease by Natural Products. J. Exp. Clin. Med. 2021, 38, 634–644. DOI: 10.52142/omujecm.38.4.42.
  • Vecchio, I.; Sorrentino, L.; Paoletti, A.; Marra, R.; Arbitrio, M. The State of the Art on Acetylcholinesterase Inhibitors in the Treatment of Alzheimer’s Disease. J. Cent. Nerv. Syst. Dis. 2021, 13, 11795735211029112. DOI: 10.1177/11795735211029113.
  • Cai, Z.; Wang, C.; Yang, W. Role of Berberine in Alzheimer’s Disease. Neuropsychiatr. Dis. Treat. 2016, 2509–2520. DOI: 10.2147/NDT.S114846.
  • Yuan, N.-N.; Cai, C.-Z.; Wu, M.-Y.; Su, H.-X.; Li, M.; Lu, J.-H. Neuroprotective Effects of Berberine in Animal Models of Alzheimer’s Disease: A Systematic Review of Pre-Clinical Studies. BMC Complement. Altern. Med. 2019, 19(1), 1–10. DOI: 10.1186/s12906-019-2510-z.
  • Giacomeli, R.; Izoton, J. C.; Dos Santos, R. B.; Boeira, S. P.; Jesse, C. R.; Haas, S. E. Neuroprotective Effects of Curcumin Lipid-Core Nanocapsules in a Model Alzheimer’s Disease Induced by β-Amyloid 1-42 Peptide in Aged Female Mice. Brain. Res. 2019, 1721, 146325. DOI: 10.1016/j.brainres.2019.146325.
  • Wu, P.; Li, B.; Yu, Y.; Su, P.; Liu, X.; Zhang, Z.; Zhi, D.; Qi, F.; Fei, D.; Zhang, Z. Isolation, Characterization, and Possible Anti‐Alzheimer’s Disease Activities of Bisabolane‐Type Sesquiterpenoid Derivatives and Phenolics from the Rhizomes of Curcuma Longa. Chem. Biodivers. 2020, 17, e2000067. DOI: 10.1002/cbdv.202000067.
  • Seo, E.-J.; Fischer, N.; Efferth, T. Phytochemicals as Inhibitors of NF-Κb for Treatment of Alzheimer’s Disease. Pharmacol. Res. 2018, 129, 262–273. DOI: 10.1016/j.phrs.2017.11.030.
  • Gomes, B. A. Q.; Silva, J. P. B.; Romeiro, C. F. R.; Dos Santos, S. M.; Rodrigues, C. A.; Gonçalves, P. R.; Sakai, J. T.; Mendes, P. F. S.; Varela, E. L. P.; Monteiro, M. C. Neuroprotective Mechanisms of Resveratrol in Alzheimer’s Disease: Role of SIRT1. Oxid. Med. Cell Longev. 2018, 2018, 1–15. DOI: 10.1155/2018/8152373.
  • Yamakawa, M. Y.; Uchino, K.; Watanabe, Y.; Adachi, T.; Nakanishi, M.; Ichino, H.; Hongo, K.; Mizobata, T.; Kobayashi, S.; Nakashima, K. Anthocyanin Suppresses the Toxicity of Aβ Deposits Through Diversion of Molecular Forms in In Vitro and In Vivo Models of Alzheimer’s Disease. Nutr. Neurosci. 2016, 19(1), 32–42. DOI: 10.1179/1476830515Y.0000000042.
  • Ali, T.; Kim, T.; Rehman, S. U.; Khan, M. S.; Amin, F. U.; Khan, M.; Ikram, M.; Kim, M. O. Natural Dietary Supplementation of Anthocyanins via PI3K/Akt/Nrf2/HO-1 Pathways Mitigate Oxidative Stress, Neurodegeneration, and Memory Impairment in a Mouse Model of Alzheimer’s Disease. Mol. Neurobiol. 2018, 55(7), 6076–6093. DOI: 10.1007/s12035-017-0798-6.
  • Dickey, C. A.; Kamal, A.; Lundgren, K.; Klosak, N.; Bailey, R. M.; Dunmore, J.; Ash, P.; Shoraka, S.; Zlatkovic, J.; Petrucelli, L. et al, The High-Affinity HSP90-CHIP Complex Recognizes and Selectively Degrades Phosphorylated Tau Client Proteins. J. Clin. Invest. 2007, 117(3), 648–658.
  • Ahmad, W.; Ijaz, B.; Shabbiri, K.; Ahmed, F.; Rehman, S. Oxidative Toxicity in Diabetes and Alzheimer’s Disease: Mechanisms Behind ROS/RNS Generation. J. Biomed. Sci. 2017, 24(1), 1–10. DOI: 10.1186/s12929-017-0379-z.
  • Niedzielska, E.; Smaga, I.; Gawlik, M.; Moniczewski, A.; Stankowicz, P.; Pera, J.; Filip, M. Oxidative Stress in Neurodegenerative Diseases. Mol. Neurobiol. 2016, 53(6), 4094–4125. DOI: 10.1007/s12035-015-9337-5.
  • Berger, J.; Dorninger, F.; Forss-Petter, S.; Kunze, M. Peroxisomes in Brain Development and Function. Biochim. Biophys. Acta Mol. Cell Res. 2016, 1863(5), 934–955. DOI: 10.1016/j.bbamcr.2015.12.005.
  • Kou, J.; Kovacs, G. G.; Höftberger, R.; Kulik, W.; Brodde, A.; Forss-Petter, S.; Hönigschnabl, S.; Gleiss, A.; Brügger, B.; Wanders, R. Peroxisomal Alterations in Alzheimer’s Disease. Acta. Neuropathol 2011, 122(3), 271–283. DOI: 10.1007/s00401-011-0836-9.
  • Prosdocimi, T.; De Gioia, L.; Zampella, G.; Bertini, L. On the Generation of OH· Radical Species from H 2 O 2 by Cu (I) Amyloid Beta Peptide Model Complexes: A DFT Investigation. JBIC J. Biol. Inorg. Chem. 2016, 21, 197–212. DOI: 10.1007/s00775-015-1322-y.
  • Selkoe, D. J.; Hardy, J. The Amyloid Hypothesis of Alzheimer’s Disease at 25 Years. EMBO Mol. Med. 2016, 8, 595–608. DOI: 10.15252/emmm.201606210.
  • Huang, B.; Liu, J.; Fu, S.; Zhang, Y.; Li, Y.; He, D.; Ran, X.; Yan, X.; Du, J.; Meng, T. α-Cyperone Attenuates H2O2-Induced Oxidative Stress and Apoptosis in SH-SY5Y Cells via Activation of Nrf2. Front. Pharmacol. 2020, 11, 281. DOI: 10.3389/fphar.2020.00281.
  • Othman, S. B.; Yabe, T. Use of Hydrogen Peroxide and Peroxyl Radicals to Induce Oxidative Stress in Neuronal Cells. RAS. 2015, 3, 40–45. DOI: 10.7831/ras.3.40.
  • Park, H. R.; Lee, H.; Park, H.; Jeon, J. W.; Cho, W.-K.; Ma, J. Y. Neuroprotective Effects of Liriope Platyphylla Extract Against Hydrogen Peroxide-Induced Cytotoxicity in Human Neuroblastoma SH-SY5Y Cells. BMC Complement. Altern. Med. 2015, 15(1), 1–11. DOI: 10.1186/s12906-015-0679-3.
  • Wang, J.; Liu, H.; Zhang, X.; Li, X.; Geng, L.; Zhang, H.; Zhang, Q. Sulfated Hetero-Polysaccharides Protect SH-SY5Y Cells from H2O2-Induced Apoptosis by Affecting the PI3K/Akt Signaling Pathway. Mar. Drugs. 2017b, 15(4), 110. DOI: 10.3390/md15040110.
  • Yao, D.; Wang, J.; Wang, G.; Jiang, Y.; Shang, L.; Zhao, Y.; Huang, J.; Yang, S.; Wang, J.; Yu, Y. Design, Synthesis and Biological Evaluation of Coumarin Derivatives as Novel Acetylcholinesterase Inhibitors That Attenuate H2O2-Induced Apoptosis in SH-SY5Y Cells. Bioorg. Chem. 2016, 68, 112–123. DOI: 10.1016/j.bioorg.2016.07.013.
  • Juan-García, A.; Caprioli, G.; Sagratini, G.; Mañes, J.; Juan, C. Coffee Silverskin and Spent Coffee Suitable as Neuroprotectors Against Cell Death by Beauvericin and α-Zearalenol: Evaluating Strategies of Treatment. Toxins (Basel). 2021, 13(2), 132. DOI: 10.3390/toxins13020132.
  • Kovalevich, J.; Langford, D. Considerations for the Use of SH-SY5Y Neuroblastoma Cells in Neurobiology. Neuronal Cell Cult. Methods Protoc. 2013, 1078, 9–21.
  • Shipley, M. M.; Mangold, C. A.; Szpara, M. L. Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line. JoVE (J. Vis. Exp.). 2016, 108(108), e53193. DOI: 10.3791/53193.
  • Angeloni, S.; Freschi, M.; Marrazzo, P.; Hrelia, S.; Beghelli, D.; Juan-García, A.; Juan, C.; Caprioli, G.; Sagratini, G.; Angeloni, C.; et al. Antioxidant and Anti-Inflammatory Profiles of Spent Coffee Ground Extracts for the Treatment of Neurodegeneration. Oxid. Med. Cell Longev. 2021, 2021, 1–19. DOI: 10.1155/2021/6620913.
  • Amato, A.; Terzo, S.; Mulè, F. Natural Compounds as Beneficial Antioxidant Agents in Neurodegenerative Disorders: A Focus on Alzheimer’s Disease. Antioxidants. 2019, 8(12), 608. DOI: 10.3390/antiox8120608.
  • Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A. A.; Khan, G. J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F. Chlorogenic Acid (CGA): A Pharmacological Review and Call for Further Research. Biomed. Pharmacother. 2018, 97, 67–74. DOI: 10.1016/j.biopha.2017.10.064.
  • Oboh, G.; Agunloye, O. M.; Akinyemi, A. J.; Ademiluyi, A. O.; Adefegha, S. A. Comparative Study on the Inhibitory Effect of Caffeic and Chlorogenic Acids on Key Enzymes Linked to Alzheimer’s Disease and Some Pro-Oxidant Induced Oxidative Stress in rats’ Brain-In Vitro. Neurochem. Res. 2013b, 38(2), 413–419. DOI: 10.1007/s11064-012-0935-6.
  • Gao, L.; Li, X.; Meng, S.; Ma, T.; Wan, L.; Xu, S. chlorogenic Acid Alleviates Aβ25-35-Induced Autophagy and Cognitive Impairment via the mTOR/TFEB Signaling Pathway. Drug Des. Devel. Ther. 2020, Volume 14, 1705–1716. DOI: 10.2147/DDDT.S235969.
  • Kim, S.; Park, R.; Jeon, H.; Kwon, Y.; Chun, W. Neuroprotective Effects of 3, 5‐Dicaffeoylquinic Acid on Hydrogen Peroxide‐Induced Cell Death in SH‐SY5Y Cells. Phytother. Res. 2005, 19, 243–245. DOI: 10.1002/ptr.1652.
  • Izuta, H.; Shimazawa, M.; Tazawa, S.; Araki, Y.; Mishima, S.; Hara, H. Protective Effects of Chinese Propolis and Its Component, Chrysin, Against Neuronal Cell Death via Inhibition of Mitochondrial Apoptosis Pathway in SH-SY5Y Cells. J. Agric. Food. Chem. 2008, 56(19), 8944–8953. DOI: 10.1021/jf8014206.
  • Arya, A.; Chahal, R.; Rao, R.; Rahman, M. H.; Kaushik, D.; Akhtar, M. F.; Saleem, A.; Khalifa, S. M. A.; El-Seedi, H. R.; Kamel, M. Acetylcholinesterase Inhibitory Potential of Various Sesquiterpene Analogues for Alzheimer’s Disease Therapy. Biomolecules. 2021, 11, 350. DOI: 10.3390/biom11030350.
  • Cheng, K.-C.; Chiang, H.-C. XBP1 and PERK Have Distinct Roles in Aβ-Induced Pathology. Mol. Neurobiol. 2018, 55(9), 7523–7532. DOI: 10.1007/s12035-018-0942-y.
  • Miyamae, Y.; Han, J.; Sasaki, K.; Terakawa, M.; Isoda, H.; Shigemori, H. 3, 4, 5-Tri-O-Caffeoylquinic Acid Inhibits Amyloid β-Mediated Cellular Toxicity on SH-SY5Y Cells Through the Upregulation of PGAM1 and G3PDH. Cytotechnology. 2011, 63(2), 191–200. DOI: 10.1007/s10616-011-9341-1.
  • Ma, E.-H.; Rathnayake, A. U.; Lee, J. K.; Lee, S.-M.; Byun, H.-G. Characterization of β-Secretase Inhibitory Extracts from Sea Cucumber (Stichopus Japonicus) Hydrolysis with Their Cellular Level Mechanism in SH-SY5Y Cells. Eur. Food Res. Technol. 2021, 247(8), 2039–2052. DOI: 10.1007/s00217-021-03770-6.
  • Rathnayake, A. U.; Abuine, R.; Palanisamy, S.; Lee, J. K.; Byun, H.-G. Characterization and Purification of β− Secretase Inhibitory Peptides Fraction from Sea Cucumber (Holothuria Spinifera) Enzymatic Hydrolysates. Process Biochem. 2021, 111, 86–96. DOI: 10.1016/j.procbio.2021.10.007.
  • Wang, L.; Yin, Y.-L.; Liu, X.-Z.; Shen, P.; Zheng, Y.-G.; Lan, X.-R.; Lu, C.-B.; Wang, J.-Z. Current Understanding of Metal Ions in the Pathogenesis of Alzheimer’s Disease. Transl. Neurodegener. 2020, 9(1), 1–13. DOI: 10.1186/s40035-020-00189-z.
  • Williams, R. J.; Spencer, J. P. E. Flavonoids, Cognition, and Dementia: Actions, Mechanisms, and Potential Therapeutic Utility for Alzheimer Disease. Free Radic. Biol. Med. 2012, 52, 35–45. DOI: 10.1016/j.freeradbiomed.2011.09.010.
  • Agostinho, P.; Cunha, R. A.; Oliveira, C. Neuroinflammation, Oxidative Stress and the Pathogenesis of Alzheimer’s Disease. Curr. Pharm. Des. 2010, 16(25), 2766–2778. DOI: 10.2174/138161210793176572.
  • Ceulemans, A.-G.; Zgavc, T.; Kooijman, R.; Hachimi-Idrissi, S.; Sarre, S.; Michotte, Y. The Dual Role of the Neuroinflammatory Response After Ischemic Stroke: Modulatory Effects of Hypothermia. J. Neuroinflammation. 2010, 7(1), 1–18. DOI: 10.1186/1742-2094-7-74.
  • MacEwan, D. J. TNF Receptor Subtype Signalling: Differences and Cellular Consequences. Cell. Signal. 2002, 14(6), 477–492. DOI: 10.1016/S0898-6568(01)00262-5.
  • Taylor, D. L.; Jones, F.; Kubota, E. S. F. C. S.; Pocock, J. M. Stimulation of Microglial Metabotropic Glutamate Receptor mGlu2 Triggers Tumor Necrosis Factor α-Induced Neurotoxicity in Concert with Microglial-Derived Fas Ligand. J. Neurosci. 2005, 25, 2952–2964. DOI: 10.1523/JNEUROSCI.4456-04.2005.
  • Walker, D.; Lue, L.-F. Anti-Inflammatory and Immune Therapy for Alzheimer’s Disease: Current Status and Future Directions. Curr. Neuropharmacol. 2007, 5, 232–243. DOI: 10.2174/157015907782793667.
  • Semwal, P.; Painuli, S.; Abu-Izneid, T.; Rauf, A.; Sharma, A.; Daştan, S. D.; Kumar, M.; Alshehri, M. M.; Taheri, Y.; Das, R. Diosgenin: An Updated Pharmacological Review and Therapeutic Perspectives. Oxid. Med. Cell Longev. 2022, 2022, 1–17. DOI: 10.1155/2022/1035441.
  • Sharifi-Rad, J.; Herrera-Bravo, J.; Semwal, P.; Painuli, S.; Badoni, H.; Ezzat, S. M.; Farid, M. M.; Merghany, R. M.; Aborehab, N. M.; Salem, M. A. Artemisia Spp.: An Update on Its Chemical Composition, Pharmacological and Toxicological Profiles. Oxid. Med. Cell Longev. 2022b, 2022, 1–23. DOI: 10.1155/2022/5628601.
  • Javed, Z.; Khan, K.; Herrera-Bravo, J.; Naeem, S.; Iqbal, M. J.; Raza, Q.; Sadia, H.; Raza, S.; Bhinder, M.; Calina, D. Myricetin: Targeting Signaling Networks in Cancer and Its Implication in Chemotherapy. Cancer Cell Int. 2022, 22(1), 239. DOI: 10.1186/s12935-022-02663-2.
  • Mangialasche, F.; Solomon, A.; Winblad, B.; Mecocci, P.; Kivipelto, M. Alzheimer’s Disease: Clinical Trials and Drug Development. Lancet. Neurol. 2010, 9, 702–716. DOI: 10.1016/S1474-4422(10)70119-8.
  • Ahmad, I.; Aqil, F.; Owais, M. Modern Phytomedicine: Turning Medicinal Plants into Drugs; John Wiley & Sons, 2006. DOI:10.1002/9783527609987.
  • Salehi, B.; Sharifi-Rad, J.; Cappellini, F.; Reiner, Ž.; Zorzan, D.; Imran, M.; Sener, B.; Kilic, M.; El-Shazly, M.; Fahmy, N. M. The Therapeutic Potential of Anthocyanins: Current Approaches Based on Their Molecular Mechanism of Action. Front. Pharmacol. 2020, 11, 1300. DOI: 10.3389/fphar.2020.01300.
  • Leyva-Gomez, G.; Cortes, H.; Magana, J. J.; Leyva-García, N.; Quintanar-Guerrero, D.; Florán, B. Nanoparticle Technology for Treatment of Parkinson’s Disease: The Role of Surface Phenomena in Reaching the Brain. Drug Discov. Today. 2015, 20(7), 824–837. DOI: 10.1016/j.drudis.2015.02.009.
  • Quispe, C.; Herrera-Bravo, J.; Khan, K.; Javed, Z.; Semwal, P.; Painuli, S.; Kamiloglu, S.; Martorell, M.; Calina, D.; Sharifi-Rad, J. Therapeutic Applications of Curcumin Nanomedicine Formulations in Cystic Fibrosis. Prog. Biomater. 2022, 11(4), 321–329. DOI: 10.1007/s40204-022-00198-3.
  • Docea, A. O.; Calina, D.; Buga, A. M.; Zlatian, O.; Paoliello, M. M. B.; Mogosanu, G. D.; Streba, C. T.; Popescu, E. L.; Stoica, A. E.; Bîrcă, A. C. The Effect of Silver Nanoparticles on Antioxidant/pro-Oxidant Balance in a Murine Model. Int. J. Mol. Sci. 2020, 21, 1233. DOI: 10.3390/ijms21041233.
  • Sharifi-Rad, J.; Bahukhandi, A.; Dhyani, P.; Sati, P.; Capanoglu, E.; Docea, A. O.; Al-Harrasi, A.; Dey, A.; Calina, D. Therapeutic Potential of Neoechinulins and Their Derivatives: An Overview of the Molecular Mechanisms Behind Pharmacological Activities. Front. Nutr. 2021a, 8, 664197. DOI: 10.3389/fnut.2021.664197.
  • Sharifi-Rad, J.; Dey, A.; Koirala, N.; Shaheen, S.; El Omari, N.; Salehi, B.; Goloshvili, T.; Cirone Silva, N. C.; Bouyahya, A.; Vitalini, S. Cinnamomum Species: Bridging Phytochemistry Knowledge, Pharmacological Properties and Toxicological Safety for Health Benefits. Front. Pharmacol. 2021b, 12, 600139. DOI: 10.3389/fphar.2021.600139.
  • Sharifi-Rad, J.; Quispe, C.; Imran, M.; Rauf, A.; Nadeem, M.; Gondal, T. A.; Ahmad, B.; Atif, M.; Mubarak, M. S.; Sytar, O. Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits. Oxid. Med. Cell Longev. 2021c, 2021, 1–36. DOI: 10.1155/2021/3268136.
  • Ramalho, M. J.; Andrade, S.; Loureiro, J. A.; Carmo Pereira, M. D. Nanotechnology to Improve the Alzheimer’s Disease Therapy with Natural Compounds. Drug Deliv. Transl. Res. 2020, 10, 380–402. DOI: 10.1007/s13346-019-00694-3.
  • Del Prado-Audelo, M. L.; Caballero-Florán, I. H.; Meza-Toledo, J. A.; Mendoza-Muñoz, N.; González-Torres, M.; Florán, B.; Cortés, H.; Leyva-Gómez, G. Formulations of Curcumin Nanoparticles for Brain Diseases. Biomolecules. 2019, 9, 56. DOI: 10.3390/biom9020056.
  • Naqvi, S.; Panghal, A.; Flora, S. J. S. Nanotechnology: A Promising Approach for Delivery of Neuroprotective Drugs. Front. Neurosci. 2020, 14, 494. DOI: 10.3389/fnins.2020.00494.
  • Kamatou, G. P. P.; Viljoen, A. M. A Review of the Application and Pharmacological Properties of α-Bisabolol and α-Bisabolol-Rich Oils. J. Am. Oil Chem. Soc. 2010, 87(1), 1–7. DOI: 10.1007/s11746-009-1483-3.
  • Anand, P.; Kunnumakkara, A. B.; Newman, R. A.; Aggarwal, B. B. Bioavailability of Curcumin: Problems and Promises. Mol. Pharm. 2007, 4(6), 807–818. DOI: 10.1021/mp700113r.
  • Islam, M. T.; Ali, E. S.; Uddin, S. J.; Shaw, S.; Islam, M. A.; Ahmed, M. I.; Shill, M. C.; Karmakar, U. K.; Yarla, N. S.; Khan, I. N. Phytol: A Review of Biomedical Activities. Food Chem. Toxicol. 2018, 121, 82–94. DOI: 10.1016/j.fct.2018.08.032.
  • Mohar, D. S.; Malik, S. The Sirtuin System: The Holy Grail of Resveratrol? J. Clin. Exp. Cardiolog. 2012, 3. DOI: 10.4172/2155-9880.1000216.
  • Walle, T. Bioavailability of Resveratrol. Ann. N Y Acad. Sci. 2011, 1215(1), 9–15. DOI: 10.1111/j.1749-6632.2010.05842.x.
  • Bacci, A.; Runfola, M.; Sestito, S.; Rapposelli, S. Beyond Antioxidant Effects: Nature-Based Templates Unveil New Strategies for Neurodegenerative Diseases. Antioxidants. 2021, 10(3), 367. DOI: 10.3390/antiox10030367.
  • Calina, D.; Hartung, T.; Docea, A. O.; Spandidos, D. A.; Egorov, A. M.; Shtilman, M. I.; Carvalho, F.; Tsatsakis, A. COVID-19 Vaccines: Ethical Framework Concerning Human Challenge Studies. DARU J. Pharm. Sci. 2020c, 28(2), 807–812. DOI: 10.1007/s40199-020-00371-8.
  • Calina, D.; Sarkar, C.; Arsene, A. L.; Salehi, B.; Docea, A. O.; Mondal, M.; Islam, M. T.; Zali, A.; Sharifi-Rad, J. Recent Advances, Approaches and Challenges in Targeting Pathways for Potential COVID-19 Vaccines Development. Immunol. Res. 2020d, 68(6), 315–324. DOI: 10.1007/s12026-020-09154-4.
  • Torequl Islam, M.; Nasiruddin, M.; Khan, I. N.; Mishra, S. K.; Kudrat-E-Zahan, M.; Alam Riaz, T.; Ali, E. S.; Rahman, M. S.; Mubarak, M. S.; Martorell, M. A Perspective on Emerging Therapeutic Interventions for COVID-19. Front. Public Health. 2020, 8, 281. DOI: 10.3389/fpubh.2020.00281.
  • Calina, D.; Hernández, A. F.; Hartung, T.; Egorov, A. M.; Izotov, B. N.; Nikolouzakis, T. K.; Tsatsakis, A.; Vlachoyiannopoulos, P. G.; Docea, A. O. Challenges and Scientific Prospects of the Newest Generation of mRNA-Based Vaccines Against SARS-CoV-2. Life. 2021, 11, 907. DOI: 10.3390/life11090907.
  • Kostoff, R. N.; Kanduc, D.; Porter, A. L.; Shoenfeld, Y.; Calina, D.; Briggs, M. B.; Spandidos, D. A.; Tsatsakis, A. Vaccine-And Natural Infection-Induced Mechanisms That Could Modulate Vaccine Safety. Toxicol. Rep. 2020, 7, 1448–1458. DOI: 10.1016/j.toxrep.2020.10.016.
  • Neagu, M.; Calina, D.; Docea, A. O.; Constantin, C.; Filippini, T.; Vinceti, M.; Drakoulis, N.; Poulas, K.; Nikolouzakis, T. K.; Spandidos, D. A. Back to Basics in COVID‐19: Antigens and Antibodies—Completing the Puzzle. J. Cell Mol. Med. 2021, 25(10), 4523–4533. DOI: 10.1111/jcmm.16462.
  • Albertini, C.; Salerno, A.; de Sena Murteira Pinheiro, P.; Bolognesi, M. L. From Combinations to Multitarget‐Directed Ligands: A Continuum in Alzheimer’s Disease Polypharmacology. Med. Res. Rev. 2021, 41(5), 2606–2633. DOI: 10.1002/med.21699.