1,190
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Proton transverse relaxation times depending on the unsaturated fatty acids: a magnetic resonance relaxometric study on beef fat samples

ORCID Icon &
Pages 2201-2211 | Received 17 Apr 2023, Accepted 01 Aug 2023, Published online: 10 Aug 2023

References

  • Smith, S. B.; Lunt, D. K.; Chung, K. Y.; Choi, C. B.; Tume, R. K.; Zembayashi, M. Adiposity, Fatty Acid Composition, and Delta-9 Desaturase Activity During Growth in Beef Cattle. Anim. Sci. J. 2006, 77(5), 478–486. DOI: 10.1111/j.1740-0929.2006.00375.x.
  • Woods, V. B.; Fearon, A. M. Dietary Sources of Unsaturated Fatty Acids for Animals and Their Transfer into Meat, Milk and Eggs: A Review. Livest. Sci. 2009, 126(1–3), 1–20. DOI: 10.1016/j.livsci.2009.07.002.
  • Vahmani, P.; Mapiye, C.; Prieto, N.; Rolland, D. C.; McAllister, T. A.; Aalhus, J. L.; Dugan, M. E. The Scope for Manipulating the Polyunsaturated Fatty Acid Content of Beef: A Review. J. Animal. Sci. Biotechnol. 2015, 6(1), 1–13. DOI: 10.1186/s40104-015-0026-z.
  • Motoyama, M.; Sasaki, K.; Watanabe, A. Wagyu and the Factors Contributing to Its Beef Quality: A Japanese Industry Overview. Meat Sci. 2016, 120, 10–18. DOI: 10.1016/j.meatsci.2016.04.026.
  • Gotoh, T.; Nishimura, T.; Kuchida, K.; Mannen, H. The Japanese Wagyu Beef Industry: Current Situation and Future Prospects-A Review. Asian-Australas J. Anim. Sci. 2018, 31(7), 933–950. DOI: 10.5713/ajas.18.0333.
  • Smith, S. B.; Lunt, D. K.; Smith, D. R.; Walzem, R. L. Producing High-Oleic Acid Beef and the Impact of Ground Beef Consumption on Risk Factors for Cardiovascular Disease: A Review. Meat Sci. 2020, 163, 108076. DOI: 10.1016/j.meatsci.2020.108076.
  • Park, S. J.; Beak, S. H.; Kim, S. Y.; Jeong, I. H.; Piao, M. Y.; Kang, H. J.; Fassah, D. M.; Na, S. W.; Yoo, A. P.; Baik, M., et al. Genetic, Management, and Nutritional Factors Affecting Intramuscular Fat Deposition in Beef Cattle — a Review. Asian-Australas J. Anim. Sci. 2018, 31(7), 1043–1061. DOI: 10.5713/ajas.18.0310.
  • Mir, P. S.; Ivan, M.; He, M. L.; Pink, B.; Okine, E.; Goonewardene, L.; McAllister, T. A.; Weselake, R.; Mir, Z. Dietary Manipulation to Increase Conjugated Linoleic Acids and Other Desirable Fatty Acids in Beef: A Review. Can. J. Anim. Sci. 2003, 83(4), 673–685. DOI: 10.4141/A03-002.
  • Cabiddu, A.; Peratoner, G.; Valenti, B.; Monteils, V.; Martin, B.; Coppa, M. A Quantitative Review of On-Farm Feeding Practices to Enhance the Quality of Grassland-Based Ruminant Dairy and Meat Products. Animal. 2022, 16, 100375. DOI: 10.1016/j.animal.2021.100375.
  • Griebenow, R. L.; Martz, F. A.; Morrow, R. E. Forage-Based Beef Finishing Systems: A Review. J. Prod. Agric. 1997, 10(1), 84–91. DOI: 10.2134/jpa1997.0084.
  • Nakashima, Y. Paving The Way To Measure Oleic Acid Content In Live Cattle! The AIST Press Release Web Site (In Japanese). 2022. https://www.aist.go.jp/aist_j/press_release/pr2022/pr20220905/pr20220905.html (accessed June 2, 2023).
  • Nakashima, Y. Apparatus and Method for the Measurement of the Composition of Fatty Acids. Japanese patent (application number 2022-095132) 2022.
  • Blümich, B.; Perlo, J.; Casanova, F. Mobile Single-Sided NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2008, 52(4), 197–269. DOI: 10.1016/j.pnmrs.2007.10.002.
  • Casanova, F.; Perlo, J., and Blümich, B. Eds. Single-Sided NMR, Springer: Berlin, 2011. DOI: 10.1007/978-3-642-16307-4.
  • Nakashima, Y. Development of a Single-Sided Nuclear Magnetic Resonance Scanner for the in vivo Quantification of Live Cattle Marbling. Appl. Magn. Reson. 2015, 46(5), 593–606. DOI: 10.1007/s00723-015-0657-4.
  • Nakashima, Y.; Shiba, N. Nondestructive Measurement of Intramuscular Fat Content of Fresh Beef Meat by a Hand-Held Magnetic Resonance Sensor. Int. J. Food. Prop. 2021, 24(1), 1722–1736. DOI: 10.1080/10942912.2021.1999261.
  • Piao, S.; Okura, T.; Irie, M. On-Site Evaluation of Wagyu Beef Carcasses Based on the Monounsaturated, Oleic, and Saturated Fatty Acid Composition Using a Handheld Fiber-Optic Near-Infrared Spectrometer. Meat Sci. 2018, 137, 258–264. DOI: 10.1016/j.meatsci.2017.11.032.
  • Goi, A.; Hocquette, J. F.; Pellattiero, E.; De Marchi, M. Handheld Near-Infrared Spectrometer Allows On-Line Prediction of Beef Quality Traits. Meat Sci. 2022, 184, 108694. DOI: 10.1016/j.meatsci.2021.108694.
  • Wang, C.; Wang, S.; He, X.; Wu, L.; Li, Y.; Guo, J. Combination of Spectra and Texture Data of Hyperspectral Imaging for Prediction and Visualization of Palmitic Acid and Oleic Acid Contents in Lamb Meat. Meat Sci. 2020, 169, 108194. DOI: 10.1016/j.meatsci.2020.108194.
  • Leighton, P. L.; Segura, J.; Lam, S.; Marcoux, M.; Wei, X.; Lopez-Campos, O.; Soladoye, P.; Dugan, M. E.; Juarez, M.; Prieto, N. Prediction of Carcass Composition and Meat and Fat Quality Using Sensing Technologies: A Review. Meat and Muscle Biology. 2020, 5(3), 12951, 1–21. https://doi.org/10.22175/mmb.12951.
  • Chapman, J.; Elbourne, A.; Truong, V. K.; Cozzolino, D. Shining Light into Meat–A Review on the Recent Advances in in vivo and Carcass Applications of Near Infrared Spectroscopy. Int. J. Food Sci. Technol. 2020, 55(3), 935–941. DOI: 10.1111/ijfs.14367.
  • Utsuzawa, S.; Fukushima, E. Unilateral NMR with a Barrel Magnet. J. Magn. Reson. 2017, 282, 104–113. DOI: 10.1016/j.jmr.2017.07.006.
  • Morin, D. M.; Yan, P.; Augustine, M. P.; Balcom, B. J. An Optimized 2 MHz Unilateral Magnet with a Large Homogeneous Sensitive Spot. Appl. Magn. Reson. 2022, 53(2), 401–415. DOI: 10.1007/s00723-021-01455-7.
  • Veliyulin, E.; van der Zwaag, C.; Burk, W.; Erikson, U. In vivo Determination of Fat Content in Atlantic Salmon (Salmo Salar) with a Mobile NMR Spectrometer. J. Sci. Food Agric. 2005, 85(8), 1299–1304. DOI: 10.1002/jsfa.2117.
  • Nakashima, Y. Non-Destructive Quantification of Lipid and Water in Fresh Tuna Meat by a Single-Sided Nuclear Magnetic Resonance Scanner. J. Aquat. Food Prod. Technol. 2019, 28(2), 241–252. DOI: 10.1080/10498850.2019.1569742.
  • Moraes, T. B.; Colnago, L. A. Noninvasive Analyses of Food Products Using Low-Field Time-Domain NMR: A Review of Relaxometry Methods. Braz. J. Phys. 2022, 52(2), 43. DOI: 10.1007/s13538-022-01055-1.
  • Dunn, K. J.; Bergman, D. J.,; and LaTorraca, G. A., Eds. Nuclear Magnetic Resonance: Petrophysical and Logging Applications. Seismic Exploration: Pergamon, Amsterdam, 2002; Vol. 32
  • Search Service of the Cattle Individual Identification Number Information. National Livestock Breeding Center ( Odakura, Nishigo-mura, Nishishirakawa-gun, Fukushima 961-8511, Japan). http://www.nlbc.go.jp/en/ (accessed June 2, 2023).
  • Ministry of Education, Culture, Sports, Science and Technology, Japan. Standard Tables Of Food Composition In Japan 2015 (7th Ed.) 2015. https://www.mext.go.jp/en/policy/science_technology/policy/title01/detail01/1374030.htm (accessed June 2, 2023).
  • Godyń, D.; Herbut, P.; Angrecka, S. Measurements of Peripheral and Deep Body Temperature in Cattle-A Review. J. Therm. Biol. 2019, 79, 42–49. DOI: 10.1016/j.jtherbio.2018.11.011.
  • Provencher, S. W. A Constrained Regularization Method for Inverting Data Represented by Linear Algebraic or Integral Equations. Comput. Phys. Commun. 1982, 27(3), 213–227. DOI: 10.1016/0010-4655(82)90173-4.
  • Kowalewski, J.; Levy, G. C.; Johnson, L. F.; Palmer, L. A Three-Parameter Non-Linear Procedure for Fitting Inversion-Recovery Measurements of Spin-Lattice Relaxation Times. J. Magn. Reson. 1977, 26(3), 533–536. DOI: 10.1016/0022-2364(77)90106-8.
  • Hürlimann, M. D.; Griffin, D. D. Spin Dynamics of Carr–Purcell–Meiboom–Gill-like Sequences in Grossly Inhomogeneous B0 and B1 Fields and Application to NMR Well Logging. J. Magn. Reson. 2000, 143(1), 120–135. DOI: 10.1006/jmre.1999.1967.
  • Hürlimann, M. D.; Burcaw, L.; Song, Y. Q. Quantitative Characterization of Food Products by Two-Dimensional D–T2 and T1–T2 Distribution Functions in a Static Gradient. J. Colloid. Interface. Sci. 2006, 297,1, 303–311. DOI: 10.1016/j.jcis.2005.10.047.
  • Cheng, S.; Wang, X.; Liu, B. L. Low-Field Nuclear Magnetic Resonance Relaxation Characteristics of Fatty Acids with Different Chain Lengths and Degree of Unsaturation. Chinese J. Anal. Chem. 2018, 46, 281–287.
  • Zverev, L. V.; Prudnikov, S. M.; Vityuk, B. Y.; Dzhioev, T. E.; Panyushkin, V. T. Determination of the Main Fatty Acids in Sunflower-Seed Oil by a Nuclear Magnetic Relaxation Technique. J. Anal. Chem. 2001, 56(11), 1029–1031. DOI: 10.1023/A:1012504708121.
  • Nikolskaya, E.; Hiltunen, Y. Molecular Properties of Fatty Acid Mixtures Estimated by Online Time-Domain NMR. Appl. Magn. Reson. 2019, 50(1–3), 159–170. DOI: 10.1007/s00723-018-1046-6.
  • Inoue, T.; Hisatsugu, Y.; Ishikawa, R.; Suzuki, M. Solid–Liquid Phase Behavior of Binary Fatty Acid Mixtures: 2. Mixtures of Oleic Acid with Lauric Acid, Myristic Acid, and Palmitic Acid. Chem. Phys. Lipids. 2004, 127(2), 161–173. DOI: 10.1016/j.chemphyslip.2003.10.013.
  • Han, T.; Liu, J.; Liu, R.; Chen, W.; Yao, M.; Liu, X.; Xu, K.; Zhang, Z.; Li, C.; Wang, Y., et al. In vivo Near-Infrared Noninvasive Glucose Measurement and Detection in Humans. Appl. Spectrosc. 2022, 76(9), 1100–1111. DOI: 10.1177/00037028221092474.
  • Capitani, D.; Sobolev, A. P.; Di Tullio, V.; Mannina, L.; Proietti, N. Portable NMR in Food Analysis. Chem. Biol. Technol. Agric. 2017, 4(1), 1–14. DOI: 10.1186/s40538-017-0100-1.
  • Nogi, T.; Okagaki, T. Relationship of the Fatty Acid Composition for the Stored Fat and Intramuscular Fat in the Same Beef. Bull. Tottori. Anim. Husb. Exp. Stn. 2007, 35, 8–13. (in Japanese)
  • Ma, S.; Yao, Q.; Masuda, T.; Higaki, S.; Yoshioka, K.; Arai, S.; Takamatsu, S.; Itoh, T. Development of Noncontact Body Temperature Monitoring and Prediction System for Livestock Cattle. IEEE Sensors J. 2021, 21(7), 9367–9376. DOI: 10.1109/JSEN.2021.3056112.
  • Blümich, B.; Anders, J. When the MOUSE Leaves the House. Magn. Reson. 2021, 2, 149–160. DOI: 10.5194/mr-2-149-2021.
  • Xie, D.; Chen, L.; Liu, L.; Chen, L.; Wang, H. Actuators and Sensors for Application in Agricultural Robots: A Review. Machines. 2022, 10(10), 913. DOI: 10.3390/machines10100913.
  • Luo, G.; Xiao, L.; Luo, S.; Liao, G.; Shao, R. A Study on Multi-Exponential Inversion of Nuclear Magnetic Resonance Relaxation Data Using Deep Learning. J. Magn. Reson. 2023, 346, 107358. DOI: 10.1016/j.jmr.2022.107358.