2,070
Views
1
CrossRef citations to date
0
Altmetric
Review Article

A comprehensive review on biochemical and technological properties of rye (Secale cereale L.)

, ORCID Icon, , , , , ORCID Icon, , , , , , & ORCID Icon show all
Pages 2212-2228 | Received 18 May 2023, Accepted 27 Jul 2023, Published online: 08 Aug 2023

References

  • Schwingshackl, L.; Knüppel, S.; Michels, N.; Schwedhelm, C.; Hoffmann, G.; Iqbal, K.; … De Henauw, S.; Boeing, H.; Devleesschauwer, B. Intake of 12 Food Groups and Disability-Adjusted Life Years from Coronary Heart Disease, Stroke, Type 2 Diabetes, and Colorectal Cancer in 16 European Countries. Eur. j. epidemiol. 2019, 34(8), 765–775. DOI: 10.1007/s10654-019-00523-4.
  • Bondia-Pons, I.; Aura, A. M.; Vuorela, S.; Kolehmainen, M.; Mykkänen, H.; Poutanen, K. Rye Phenolics in Nutrition and Health. J. Cer. Sci. 2009, 49(3), 323–336. DOI: 10.1016/j.jcs.2009.01.007.
  • Ikram, A.; Saeed, F.; Afzaal, M.; Abdullah, M.; Niaz, B.; Asif Khan, M.; … Hussain, M.; Adnan Nasir, M.; Siddeeg, A. Comparative Study of Biochemical Properties, Anti-Nutritional Profile, and Antioxidant Activity of Newly Developed Rye Variants. Int. J. Food. Prop. 2022, 25(1), 608–616. DOI: 10.1080/10942912.2022.2053708.
  • Ikram, A.; Saeed, F.; Arshad, M. U.; Afzaal, M.; Anjum, F. M. Structural and Nutritional Portrayal of Rye‐Supplemented Bread Using Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy. Food Sci. Nut. 2021, 9(11), 6314–6321. DOI: 10.1002/fsn3.2592.
  • Ahmad, I.; Wang, H.; Kamran, M.; Ikram, K.; Hou, F. Simulated Grazing (Clipping) Affected Growth and Nutritional Quality of Barley, Rye, and Wheat in an Arid Climate. J. Plant Growth Regul. 2023, 42(5), 3017–3031. DOI: 10.1007/s00344-022-10765-4.
  • Banerjee, P.; Maitra, S.; Banerjee, P. The Role of Small Millets as Functional Food to Combat Malnutrition in Developing Countries. Indian J. Natur. Sci. 2020, 10(60), 20412–20417.
  • Kaur, P.; Sandhu, K. S.; Purewal, S. S.; Kaur, M.; Singh, S. K. Rye: A Wonder Crop with Industrially Important Macromolecules and Health Benefits. Food Res. Inter. 2021, 150, 110769. DOI: 10.1016/j.foodres.2021.110769.
  • Hu, X.; Zhang, G.; Hamaker, B. R.; Miao, M. The Contribution of Intact Structure and Food Processing to Functionality of Plant Cell Wall-Derived Dietary Fiber. Food Hydrocoll. 2022, 127, 107511. DOI: 10.1016/j.foodhyd.2022.107511.
  • Shah, B. R.; Li, B.; Al Sabbah, H.; Xu, W.; Mráz, J. Effects of Prebiotic Dietary Fibers and Probiotics on Human Health: With Special Focus on Recent Advancement in Their Encapsulated Formulations. Trend. Food Sci. Tech. 2020, 102, 178–192. DOI: 10.1016/j.tifs.2020.06.010.
  • Xu, T.; Wu, X.; Liu, J.; Sun, J.; Wang, X.; Fan, G.; Zhang, Y.; Zhang, J.; Zhang, Y. The Regulatory Roles of Dietary Fibers on Host Health via Gut Microbiota-Derived Short Chain Fatty Acids. Curr. Opin. Pharmacol. 2022, 62, 36–42. DOI: 10.1016/j.coph.2021.11.001.
  • Ikram, A.; Saeed, F.; Afzaal, M.; Imran, A.; Niaz, B.; Tufail, T.; Anjum, F. M.; Anjum, F. M. Nutritional and End‐Use Perspectives of Sprouted Grains: A Comprehensive Review. Food Sci. Nutr. 2021, 9(8), 4617–4628. DOI: 10.1002/fsn3.2408.
  • Liu, X.; Yang, W.; Petrick, J. L.; Liao, L. M.; Wang, W.; He, N.; Zhang, X.; Zhang, Z.-F.; Giovannucci, E.; McGlynn, K. A. Higher Intake of Whole Grains and Dietary Fiber are Associated with Lower Risk of Liver Cancer and Chronic Liver Disease Mortality. Nat. Commun. 2021, 12(1), 1–9. DOI: 10.1038/s41467-021-26448-9.
  • Bozbulut, R.; Sanlier, N. Promising Effects of β-Glucans on Glyceamic Control in Diabetes. Trend. Food Sci. Tech. 2019, 83, 159–166. DOI: 10.1016/j.tifs.2018.11.018.
  • Ubago-Guisado, E.; Rodríguez-Barranco, M.; Ching-López, A.; Petrova, D.; Molina-Montes, E.; Amiano, P.; Sánchez, M. J.; Chirlaque, M.-D.; Agudo, A.; Sánchez, M.-J. Evidence Update on the Relationship Between Diet and the Most Common Cancers from the European Prospective Investigation into Cancer and Nutrition (EPIC) Study: A Systematic Review. Nutr. 2021, 13(10), 3582. DOI: 10.3390/nu13103582.
  • Aune, D. Plant Foods, Antioxidant Biomarkers, and the Risk of Cardiovascular Disease, Cancer, and Mortality: A Review of the Evidence. Adv. Nutr. 2019, 10(4), S404–S421. DOI: 10.1093/advances/nmz042.
  • Bangar, S. P.; Kaushik, N. Functional Cereals: Functional Components and Benefits. In Functional Cereals and Cereal Foods 2022; Springer International Publishing: Cham, 2022; pp. 3–25. DOI: 10.1007/978-3-031-05611-6_1
  • Soliman, G. A. Dietary Fiber, Atherosclerosis, and Cardiovascular Disease. Nutr. 2019, 11(5), 1155. DOI: 10.3390/nu11051155.
  • Merenkova, S. P.; Zinina, O. V.; Stuart, M.; Okuskhanova, E. K.; Androsova, N. V. Effects of Dietary Fiber on Human Health: A Review. Человек. Спорт. Медицина. 2020, 20(1), 106–113. DOI: 10.14529/hsm200113.
  • Grundy, M. M. L.; Edwards, C. H.; Mackie, A. R.; Gidley, M. J.; Butterworth, P. J.; Ellis, P. R. Re-Evaluation of the Mechanisms of Dietary Fibre and Implications for Macronutrient Bioaccessibility, Digestion and Postprandial Metabolism. Br. J. Nutr. 2016, 116(5), 816–833. DOI: 10.1017/S0007114516002610.
  • Singh, A.; Sharma, S. Bioactive Components and Functional Properties of Biologically Activated Cereal Grains: A Bibliographic Review. Crit. Rev. Food Sci. Nutr. 2017, 57(14), 3051–3071. DOI: 10.1080/10408398.2015.1085828.
  • Brownlee, I. A.; Chater, P. I.; Pearson, J. P.; Wilcox, M. D. Dietary Fibre and Weight Loss: Where are We Now?. Food Hydrocoll. 2017, 68, 186–191. DOI: 10.1016/j.foodhyd.2016.08.029.
  • Vinelli, V.; Biscotti, P.; Martini, D.; Del Bo’, C.; Marino, M.; Meroño, T.; Riso, P.; Calabrese, F. M.; Turroni, S.; Taverniti, V. Effects of Dietary Fibers on Short-Chain Fatty Acids and Gut Microbiota Composition in Healthy Adults: A Systematic Review. Nutr. 2022, 14(13), 2559. DOI: 10.3390/nu14132559.
  • Smith, C.; Van Haute, M. J.; Rose, D. J.; Dudley, E. G. Processing Has Differential Effects on Microbiota-Accessible Carbohydrates in Whole Grains During in vitro Fermentation. Appl. Environ. Microbiol. 2020, 86(21), e01705–20. DOI: 10.1128/AEM.01705-20.
  • Maina, N. H.; Rieder, A.; De Bondt, Y.; Mäkelä-Salmi, N.; Sahlstrøm, S.; Mattila, O.; Poutanen, K.; Nyström, L.; Courtin, C. M.; Katina, K. Process-Induced Changes in the Quantity and Characteristics of Grain Dietary Fiber. Food. 2021, 10(11), 2566. DOI: 10.3390/foods10112566.
  • El-Mahis, A.; Baky, M. H.; Farag, M. A. How Does Rye Compare to Other Cereals? A Comprehensive Review of Its Potential Nutritional Value and Better Opportunities for Its Processing as a Food-Based Cereal. Food Rev. Inter. 2022, 1–24. DOI: 10.1080/87559129.2021.2023817.
  • Kamal-Eldin, A.; Aman, P.; Zhang, J. X.; Knudsen, K. E. B.; Poutanen, K. Rye Bread and Other Rye Products. Tech. Funct. Cer. Prod. 2008, 233–260. DOI: 10.1533/9781845693886.2.233.
  • Yadav, M. P.; Kaur, A.; Singh, B.; Simon, S.; Kaur, N.; Powell, M.; Sarker, M. Extraction and Characterization of Lipids and Phenolic Compounds from the Brans of Different Wheat Varieties. Food Hydrocoll. 2021, 117, 106734. DOI: 10.1016/j.foodhyd.2021.106734.
  • Ruthes, A. C.; Rudjito, R. C.; Rencoret, J.; Gutiéerrez, A.; Del Río, J. C.; Jiménez-Quero, A.; Vilaplana, F. Comparative Recalcitrance and Extractability of Cell Wall Polysaccharides from Cereal (Wheat, Rye, and Barley) Brans Using Subcritical Water. ACS Sustain. Chem. Eng. 2020, 8(18), 7192–7204. DOI: 10.1021/acssuschemeng.0c01764.
  • Dervilly-Pinel, G.; Rimsten, L.; Saulnier, L.; Andersson, R.; Åman, P. Water-Extractable Arabinoxylan from Pearled Flours of Wheat, Barley, Rye and Triticale. Evidence for the Presence of Ferulic Acid Dimers and Their Involvement in Gel Formation. J. Cereal Sci. 2001, 34(2), 207–214. DOI: 10.1006/jcrs.2001.0392.
  • Bonnin, E.; Joseph-Aimé, M.; Fillaudeau, L.; Durand, S.; Falourd, X.; Le Gall, S.; Saulnier, L. Structure of Heteroxylans from Vitreous and Floury Endosperms of Maize Grain and Impact on the Enzymatic Degradation. Carb. Poly. 2022, 278, 118942. DOI: 10.1016/j.carbpol.2021.118942.
  • Knudsen, K. E. B.; Laerke, H. N. Rye Arabinoxylans: Molecular Structure, Physicochemical Properties and Physiological Effects in the Gastrointestinal Tract. Cereal Chem. 2010, 87(4), 353–362. DOI: 10.1094/CCHEM-87-4-0353.
  • Buksa, K.; Praznik, W.; Loeppert, R.; Nowotna, A. Characterization of Water and Alkali Extractable Arabinoxylan from Wheat and Rye Under Standardized Conditions. J. Food Sci. Tech. 2016, 53(3), 1389–1398. DOI: 10.1007/s13197-015-2135-2.
  • Saulnier, L.; Guillon, F.; Chateigner-Boutin, A. L. Cell Wall Deposition and Metabolism in Wheat Grain. J. Cereal Sci. 2012, 56(1), 91–108. DOI: 10.1016/j.jcs.2012.02.010.
  • Bautil, A.; Courtin, C. M. Fibres Making Up Wheat Cell Walls in the Context of Broiler Diets. In the Value of Fibre: Engaging the Second Brain for Animal Nutrition; Wageningen Academic Publishers, 2019. 10.3920/978-90-8686-893-3_1
  • de Lourdes Moreno, M.; Segura, V.; Ruiz-Carnicer, Á.; Nájar, A. M.; Comino, I.; Sousa, C. Oral enzyme strategy in celiac disease. In Biotechnological Strategies for the Treatment of Gluten Intolerance 2021; Academic Press, 2021; pp. 201–220. DOI: 10.1016/B978-0-12-821594-4.00005-0.
  • Dunaevsky, Y. E.; Tereshchenkova, V. F.; Belozersky, M. A.; Filippova, I. Y.; Oppert, B.; Elpidina, E. N. Effective Degradation of Gluten and Its Fragments by Gluten-Specific Peptidases: A Review on Application for the Treatment of Patients with Gluten Sensitivity. Pharmaceu. 2021, 13(10), 1603. DOI: 10.3390/pharmaceutics13101603.
  • Hackauf, B.; Siekmann, D.; Fromme, F. J. Improving Yield and Yield Stability in Winter Rye by Hybrid Breeding. Plant. 2022, 11(19), 2666. DOI: 10.3390/plants11192666.
  • Cornejo-Ramírez, Y. I.; Martínez-Cruz, O.; Del Toro-Sánchez, C. L.; Wong-Corral, F. J.; Borboa-Flores, J.; Cinco-Moroyoqui, F. J. The Structural Characteristics of Starches and Their Functional Properties. CYTA J. Food. 2018, 16(1), 1003–1017. DOI: 10.1080/19476337.2018.1518343.
  • Serna-Saldivar, S. O.; Espinosa-Ramírez, J. Grain Structure and Grain Chemical Composition. In Sorghum and Millets; AACC International Press, 2019; pp. 85–129. DOI: 10.1016/B978-0-12-811527-5.00005-8.
  • Ismagilov, R.; Ayupov, D.; Nurlygayanov, R.; Ahiyarova, L.; Abdulloev, V. Ways to Reduce Anti-Nutritional Substances in Winter Rye Grain. Physiol. Mol. Biol. Plants. 2020, 26(5), 1067–1073. DOI: 10.1007/s12298-020-00795-1.
  • Nadeem, M.; Anjum, F. M.; Amir, R. M.; Khan, M. R.; Hussain, S.; Javed, M. S. An Overview of Anti-Nutritional Factors in Cereal Grains with Special Reference to Wheat-A Review. Pak. J. Food Sci. 2010, 20(1–4), 54–61.
  • Bora, P. Anti-Nutritional Factors in Foods and Their Effects. J. Acad. Ind. Res. 2014, 3(6), 285–290.
  • Schwarz, T.; Kuleta, W.; Turek, A.; Tuz, R.; Nowicki, J.; Rudzki, B.; Bartlewski, P. M. Assessing the Efficiency of Using a Modern Hybrid Rye Cultivar for Pig Fattening, with Emphasis on Production Costs and Carcass Quality. Anim. Prod. Sci. 2014, 55(4), 467–473. DOI: 10.1071/AN13386.
  • Ram, S.; Narwal, S.; Gupta, O. P.; Pandey, V.; Singh, G. P. Anti-Nutritional Factors and Bioavailability: Approaches, Challenges, and Opportunities. Wheat. Barley. Grain Biofort. 2020, 101–128. DOI: 10.1016/B978-0-12-818444-8.00004-3.
  • Wrigley, C.; Bushuk, W. Rye: Grain-Quality Characteristics and Management of Quality Requirements. In Cereal Grains; Woodhead Publishing, 2017; pp. 153–178. DOI: 10.1016/B978-0-08-100719-8.00007-3.
  • Butt, M. S.; Tahir-Nadeem, M.; Khan, M. K. I.; Shabir, R.; Butt, M. S. Oat: Unique Among the Cereals. Eur. J. Nutr. 2008, 47(2), 68–79. DOI: 10.1007/s00394-008-0698-7.
  • Singh, A.; Gupta, O. P.; Pandey, V.; Ram, S.; Kumar, S.; Singh, G. P. Physicochemical Components of Wheat Grain Quality and Advances in Their Testing Methods. In New Horizons in Wheat and Barley Research; Springer Singapore: Singapore, 2022; pp. 741–757. DOI: 10.1007/978-981-16-4449-8_28
  • Németh, R.; Tömösközi, S. R. Rye: Current State and Future Trends in Research and Applications. Acta Aliment. 2021, 50(4), 620–640. DOI: 10.1556/066.2021.00162.
  • Kuznetsova, L.; Burykina, M.; Nutchina, M.; Parakhina, O.; Savkina, O. Quality of Rye Break Flour and Its Foaming Ability. In AIP Conf. Proc. 2022, 2478(1), 040002. AIP Publishing LLC.
  • Sharma, A.; Garg, S.; Sheikh, I.; Vyas, P.; Dhaliwal, H. S. Effect of Wheat Grain Protein Composition on End-Use Quality. J. Food Sci. Tech. 2020, 57(8), 2771–2785. DOI: 10.1007/s13197-019-04222-6.
  • Trittinger, S. Wheat (Triticum Aestivum) Kernel Polymers as Breeding Targets for Improved End-Use Quality. 2019.
  • Dziki, D. Rye Flour and Rye Bran: New Perspectives for Use. Proc. 2022, 10(2), 293. DOI: 10.3390/pr10020293.
  • Cappelli, A.; Oliva, N.; Cini, E. Stone Milling versus Roller Milling: A Systematic Review of the Effects on Wheat Flour Quality, Dough Rheology, and Bread Characteristics. Trend. Food Sci. Tech. 2020, 97, 147–155. DOI: 10.1016/j.tifs.2020.01.008.
  • Probst, K. V.; Ambrose, R. P. K.; Pinto, R. L.; Bali, R.; Krishnakumar, P.; Ileleji, K. E. The Effect of Moisture Content on the Grinding Performance of Corn and Corncobs by Hammermilling. Trans. ASABE. 2013, 56(3), 1025–1033.
  • Dhiman, A.; Prabhakar, P. K. Micronization in Food Processing: A Comprehensive Review of Mechanistic Approach, Physicochemical, Functional Properties and Self-Stability of Micronized Food Materials. J. Food Eng. 2021, 292, 110248. DOI: 10.1016/j.jfoodeng.2020.110248.
  • Pulivarthi, M. K.; Nkurikiye, E.; Watt, J.; Li, Y.; Siliveru, K. Comprehensive Understanding of Roller Milling on the Physicochemical Properties of Red Lentil and Yellow Pea Flours. Proc. 2021, 9(10), 1836. DOI: 10.3390/pr9101836.
  • Prabhasankar, P.; Haridas Rao, P. Effect of Different Milling Methods on Chemical Composition of Whole Wheat Flour. Eur. Food Res. Tech. 2001, 213(6), 465–469. DOI: 10.1007/s002170100407.
  • McKevith, B. Nutritional Aspects of Cereals. Nutr. Bull. 2004, 29(2), 111–142. DOI: 10.1111/j.1467-3010.2004.00418.x.
  • Andersson, A. A.; Dimberg, L.; Åman, P.; Landberg, R. Recent Findings on Certain Bioactive Components in Whole Grain Wheat and Rye. J. Cereal Sci. 2014, 59(3), 294–311. DOI: 10.1016/j.jcs.2014.01.003.
  • Delcour, J. Principles of Cereal Science and Technology Authors Provide Insight into the Current State of Cereal Processing. Cer. Food. World. 2010, 55(1), 21–22. DOI: 10.1094/CFW-55-1-0021.
  • Gänzle, M. G. Enzymatic and Bacterial Conversions During Sourdough Fermentation. Food Microb. 2014, 37, 2–10. DOI: 10.1016/j.fm.2013.04.007.
  • Ludwig, D. S.; Eckel, R. H. The Glycemic Index at 20 Y. Amer. J. Clini. Nutr. 2002, 76(1), 264S–265S. DOI: 10.1093/ajcn/76.1.264S.
  • Rocha-Meneses, L.; Raud, M.; Orupõld, K.; Kikas, T. Second-Generation Bioethanol Production: A Review of Strategies for Waste Valorisation. Agro. Res. 2017, 15(3), 830–847.
  • Pajari, A. M.; Freese, R.; Kariluoto, S.; Lampi, A. M.; Piironen, V. Bioactive Compounds in Whole Grains and Their Implications for Health. Whol. Gra. Heal. 2021, 301–336. DOI: 10.1002/9781118939420.ch16.
  • Perera, W. N. U. Influence of feed processing and enzyme supplementation on performance, nutrient utilisation and gut morphology of poultry fed barley-based diets: a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Poultry Nutrition at Massey University. Doctoral dissertation, Massey University, Palmerston North, Manawatu, New Zealand, 2020.
  • Deleu, L. J.; Lemmens, E.; Redant, L.; Delcour, J. A. The Major Constituents of Rye (Secale Cereale L.) Flour and Their Role in the Production of Rye Bread, a Food Product to Which a Multitude of Health Aspects are Ascribed. Cer. Chem. 2020, 97(4), 739–754. DOI: 10.1002/cche.10306.
  • Boskov Hansen, H.; Andreasen, M. F.; Nielsen, M. M.; Larsen, L. M.; Bach Knudsen, K. E.; Meyer, A. S.; Christensen, L. P.; Hansen, A. Changes in Dietary Fibre, Phenolic Acids and Activity of Endogenous Enzymes During Rye Bread-Making. Eur. Food Res. Tech. 2002, 214(1), 33–42. DOI: 10.1007/s00217-001-0417-6.
  • Kariluoto, S.; Vahteristo, L.; Salovaara, H.; Katina, K.; Liukkonen, K. H.; Piironen, V. Effect of Baking Method and Fermentation on Folate Content of Rye and Wheat Breads. Cereal Chem. 2004, 81(1), 134–139. DOI: 10.1094/CCHEM.2004.81.1.134.
  • Buksa, K.; Nowotna, A.; Praznik, W.; Gambu_s, H.; Ziobro, R.; Krawontka, J. The Role of Pentosans and Starch in Baking of Wholemeal Rye Bread. Food. Res. Int. 2010, 43(8), 2045–2051. DOI: 10.1016/j.foodres.2010.06.005.
  • Doring, C.; Hussein, M. A.; Jekle, M.; Becker, T. On the Assessments of Arabinoxylan Localization and Enzymatic Modifications for Enhanced Protein Networking and Its Structural Impact on Rye Dough and Bread. Food Chem. 2017, 229, 178–187. DOI: 10.1016/j.foodchem.2017.02.053.
  • Stȩpniewska, S.; Hassoon, W. H.; Szafra_nska, A.; Cacak-Pietrzak, G.; Dziki, D. Procedures for Breadmaking Quality Assessment of Rye Wholemeal Flour. Foods. 2019, 8(8), 331. DOI: 10.3390/foods8080331.
  • Torbica, A.; Belovi_c, M.; Tomi_c, J. Novel Breads of Non-Wheat Flours. Food Chem. 2019, 282(1), 134–140. DOI: 10.1016/j.foodchem.2018.12.113.
  • Oest, M.; Bindrich, U.; Voß, A.; Kaiser, H.; Rohn, S. Rye Bread Defects: Analysis of Composition and Further Influence Factors as Determinants of Dry-Baking. Foods. 2020, 9(12), 1900. DOI: https://doi.org/10.3390/foods9121900.
  • Silventoinen, P.; Kortekangas, A.; Ercili-Cura, D.; Nordlund, E. Impact of Ultra-Fine Milling and Air Classification on Biochemical and Techno-Functional Characteristics of Wheat and Rye Bran. Food Res. Inter. 2021, 139, 109971. DOI: 10.1016/j.foodres.2020.109971.
  • Torbica, A.; Belović, M.; Tomić, J. Novel Breads of Non-Wheat Flours. Food Chem. 2019, 282, 134–140. DOI: 10.1016/j.foodchem.2018.12.113.
  • Döring, C.; Hussein, M. A.; Jekle, M.; Becker, T. On the Assessments of Arabinoxylan Localization and Enzymatic Modifications for Enhanced Protein Networking and Its Structural Impact on Rye Dough and Bread. Food Chem. 2017, 229, 178–187. DOI: 10.1016/j.foodchem.2017.02.053.